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ABSTRACT

As the popularity of multi-functional telephony devices grows, traditional audio
conference now may involve heterogeneous teleconferencing devices, including POTS
phone, dual-mode smart phones, pocket PCs, and so on. Among these conferencing
devices, some may have the capability of accessing IP networks and supporting video
conferencing with peer devices in the audio conference so as to have better conferenc-
ing experience. In this scenario, it becomes necessary to synchronize between audio
streams, traversed the PSTN network;+and Vidg?"(_) streams, traversed the IP network.
While related work has investigated theproblem 6f au-d:;i'o /video synchronization, their
scenario is limited to the syﬁéhroniza‘&ien Withil‘l-r homogéﬁ@ous network, hence they
cannot be applied in the target! scenario. ;"' - -5 | j

Therefore, in this thesis we proposie an eitd to ehd framework for audio/video syn-
chronization. We then snnphfy the pI!o lem z;—s on%z khat requlres only synchronization
between PSTN and IP audio streams We first emll)lloy #, time-domain algorithm based
on cross correlation and identify 1ts meffectlveness in synchronizing distorted audio
streams, due to noises or packet losses. Hence, we seek to extract distortion-tolerant
audio features by Digital Speech Processing techniques for synchronization. We ap-
ply MFCC in the synchronization algorithm and obtain respectable performance for
audio streams distorted by codec and packet losses. However, MFCC is inherently
vulnerable to overlapping speakers. Therefore, we leverage the sparsity of speeches in
spectrograms to design the spectrogram-based synchronization algorithm, and achieve
favorable performance for speech mixtures and noisy speech. Evaluation results show

that using DSP techniques is helpful in solving the synchronization problem across

PSTN audio streams and IP video streams in terms of accuracy and robustness.
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CHAPTER 1

INTRODUCTION

Ever since the invention of the first radio wave communication device decades
ago, telecommunication techniques have developed from simple telegram to telephony
service which transmits the actual voice from remote speaker. People all over the
world are easily connected by widely-distributed telephone lines. This has led to the
prosperity of telecommunication industry. Many convenient and appealing services
are promoted by the telecom companies to attract users. One of the most interesting
services is the multi-party talk service for-audio conferencing. With the capability of
conferencing over telephony systems, distant conferees have no need to commute from
afar to the same conference site, and thus“renharli(‘:‘inghthe efficiency of communication.

On the other hand, as the modern communication’ technology evolves, telephony
service is available on variousitypes of, pTatforms fo make communication almost ubiqg-
uitous. Beside of traditional POTS p oﬂg 2@ /ﬁG mobhile phones, satellite phones,

dual-mode smart phones; and even I hlﬁfeps‘ Wlthi voige gateway have already come

into the market. Therefore,when anl audia onfeﬁrence is held, conferees may attend
él‘hs

the conference through various:kinds jof telephor’q} deviees, as illustrated in Figure
1. This heterogeneity of telecohferencmg devices Isuggest heterogeneous capabilities.
For example, 3G Smart phones, poKCket»PCs, and IP.phone with voice gateway are
capable of both IP network access and ' PSTN network access while others are not.
This extra capability of dual-network access has inspired an interesting research area
as discussed in [1] which suggests that traditional telephony service can benefit from
the capability of IP network access. This is an important inspiration to this thesis
which is explained later.

On the other hand, the defect of conferencing through telephony system in com-
parison to face-to-face conference is that people cannot see the real-time image of
others which sometimes may be helpful while discussion. This defect seems to be in-
evitable for devices without video capturing and transmission capability, however, for
devices with video function, the conference experience could be improved if real-time
image is available. This has led to the motivation of holding video conference only

among the capable devices atop audio conference. Note that usually video conference
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contains both real-time image and audio %\Nevér since the audio conference is al-
ready in charge of the audio transmlfspon audio $tream in. the video conference part
should be silenced to avoid echo. : ‘

Nevertheless, video Conference serviae is not yet prov1ded by most telecom compa-
nies. The well-known available video conference services are mostly provided through
the IP network. Many research efforts are made in this area to provide better video
conference structure such as [2-4]. Although some 3G telecom service provider, for
example [5], claims that video calls are available through 3G system, video call service
is still restricted to one-to-one calls. Multi-talk service is only available for audio. The
video conference service provided for enterprise only provides a solution for 3G user
to connect to enterprise video conference server through internet, and thus limiting
the application to enterprise users only.

Therefore, holding the video conference atop audio conference through the IP net-
work where video conference is easily and already supported seems to be the most
appealing solution. When an audio conference is held, the conferees that are equipped

with video transmission and display functions can decide to hold a video conference



involving only the capable conferees. An important feature of this conferencing sce-
nario is that the audio conference is held through PSTN network® while the video
conference is held through the IP network.

Since video and audio conferences are held over different networks, heterogeneity
in network environment may lead to different delays, jitters, and so forth. However,
this distributed conference structure makes it inherently impossible to control and
re-synchronize audio and video before reception since there is no central coordinator
in the topology. Hence at the receiver side, video and audio are very likely to be asyn-
chronous, and thus results in a perceptually unpleasant conference experience. The
conventional research on audio/video synchronization might not be suitable here since
they mostly consider only audio and video streams over the same network, whereas
now the audio streams and video streams follow completely different protocols. It’s
hard for them to communicate and negotiate the time information with each other
using protocol design. *

Traditional audio/video synchronizétion reS:earchrfocuses on the conferencing in
homogeneous network, therefore the fiming information is.not an issue. However, in
the proposed scenario, since thie timing 1nformat10p is corrupted due to the heteroge-
neous network, an algorithm which ca re,estabhbl; this information according to the
audio and video streams should be CF 5155% quated work on lip synchronization
provides a possible direction.”Nevertheless,-the tlmle—consumlng video processing and
the vulnerability to interferences prj:)Frtles of hpI {;ynchromzatlon imply the unsuit-
ableness of this direction. Therefore; a different”syrichronization algorithm needs to
be considered. 3 :

Thereby, we propose an end-to-end synchronization framework which requires
no infrastructure supports to solve this problem. By taking advantage of the IP
network, we simplify the problem to the synchronization between PSTN and IP audio
streams. When the synchronization between these two streams is achieved, the timing
information between PSTN audio and IP video can be easily derived.

To address this audio synchronization problem, we first propose a time-domain
cross-correlation algorithm and depict the insufficiency of this time-domain algorithm.
Hence, inspired by the research in Digital Speech Processing (DSP) [6], another
MFCC-based algorithm is proposed. However, after the evaluation on the robustness
of this algorithm, we point out the defects of this MFCC-based algorithm. Another

spectrogram-based algorithm is thus proposed to address those defects.

In the following text, PSTN is referred to as the general term for all traditional telephony
networks, including POTS, GSM, UMTS, and so on.



The chapters in this thesis is organized as following. In the following chapters,
the detailed background of the research scenario is first stated. Some related papers
are reviewed and discussed in the following part. Previous works mostly provide
solutions relying on the common time stamps stamped on both video and audio
streams. The synchronization design considers how to design a protocol to control
media flow so as to avoid playback buffer underflow or overflow. However, since in the
proposed scenario, video conference and audio conference are held on heterogeneous
networks, difference in network protocol makes these two streams difficult to negotiate
the timing relationship through common time stamps. Therefore, recovering the
timing information through the transmitted content is the main focus. Several related
papers on synchronizing human speech which directly use video and audio contents
for synchronization are reviewed. Nevertheless, several essential drawbacks implies
the unsuitableness of this direction.

Next, in Chapter 3 we propose an end=to-end synchronization framework and sim-
plify the problem into audio synchronizétion, Wilich ditectly.compare the transmitted
audio streams from both networkss Preliminary measﬁrement on the asynchrony be-
tween audio from PSTN netwotk ands v1deo frqm IP network is conducted. Although
the result only shows the delay differ ncéﬁf a, s'upple environment, the well-known
time-varying network characteristic (i)f I e’cwof‘k‘x suggests that the received audio
and video streams may be asynchror us. %nde{[ F?chis framework, the challenges of
audio synchronization is discussed in; {he following r!part.'

In Chapter 4, time-domain-based: syfichronization algorithm which uses time do-
main cross correlation on two audio stréamsis examined. Evaluation of performance
shows the insufficiency of using only time domain characteristics of audio in that the
timing structure may be easily corrupted by interferences and other distortions on
audio. Although the performance can be improved by including more samples in the
cross correlation, the resulting computation time may be so large that the synchro-
nization algorithm may not be reactive to the network dynamics. Hence, exploiting
other representations of speech through Digital Speech Processing (DSP) techniques
that better characterize the speech of interest is considered.

Inspired by the speech recognition research area, a widely-used DSP feature called
Mel-Frequency Ceptral Coefficient (MFCC) is first examined in Chapter 5. We found

a patent for a similar application which proposes a simple synchronization algorithm



based on MFCC. Since that solution focuses more on the design of synchroniza-
tion framework rather than the synchronization algorithm for locating synchroniza-
tion point, the effectiveness of using MFCC for synchronization against the afore-
mentioned challenges is analyzed. The analysis reveals that MFCC might be fragile
to interference of other speakers included in the PSTN network.

Therefore, in Chapter 6, we adopt another DSP feature, the spectrogram, of
speech which is better tolerable to interferences and noises, as suggested by many
blind speech separation research. The advantage of using spectrogram for the design
of synchronization algorithm is described and evaluated. Then an algorithm based
on the merits of time-frequency representation is proposed, followed by performance
analysis in terms of the robustness to interference and other sources of waveform
distortion.

From the performance evaluation, werconeclude that the MFCC-based synchro-
nization algorithm is more robust tosxcodec dlstortlon and packet loss while the
spectrogram-based algorithm is more Lobust to AWGN noise and overlapping speak-
ers. The measurement of computatlon time requlred for"both MFCC-based and
spectrogram-based algorlthms is only of the qrde}; of a‘féw milliseconds. Therefore,
these algorithms can be better reactlv to,ﬁﬁtWOfki dynamics.

| |
&r[J.‘_ 1 ﬁ
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CHAPTER 2

BACKGROUND

Before we step into the discussion of the synchronization algorithm in the proposed
scenario, more insights into the heterogeneous teleconferencing structure is given in
advance to better motivate the synchronization issue. Several related papers are

reviewed in the field of audio/video synchronization.

2.1 Heterogeneous Teleconferencing Scenario

The heterogeneous teleconferencing scenario is‘illustrated in Figure 2. As shown
in Figure 2, five conferees are attending the PSTN audio conference while only three
of them, which are the dual—mode‘pocket PC, dualtmiode smart phone, and the laptop
with IP soft phone,are the participants of the IP video, conference.

While the audio conference is usually- Contrblled and maintained by the audio con-
ference server belonging to a telecom|c m@,.t ¢ video conference is not restricted
to this centralized structure. The IPh 1deol'!:pnfe¥ence can be held by either central-
ized or distributed structures. In thelf | llowing par’l;, we mtend to give an overview of

how these conferencing struetites Woﬂ{ S0 asito aoqulre more in depth understanding

of the heterogeneous teleconferencmg stmcture

2.1.1 Audio Conference Architecture

Audio teleconferencing services involve the use of computer-controlled electronic
equipment known as an audio teleconference bridge (bridge). A bridge is similar to
a telephone exchange PBX switch in that many telephone lines may be connected
to it to accommodate either incoming or outgoing calls. Unlike a PBX connection,
a conference may be established through the bridge. The bridge permits simulta-
neous speaking by all participants, eliminates clipping, filters out the echo of each
participant’s own speech, equalizes sound volume and clarity, and permits both dial-
out and dial-in connections so that participants may join the conference either by a
call from the teleconference operator or by dialing a prearranged number. For each
conferencing end, the received voice is the mixture of all the other conferees’ voice.

The network where a conference bridge lies usually determines the type of this
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conference bridge which could be a STl\ﬁbndgq, an IP-bridge, or even a hybrid
bridge. For example, [7] has annouc d a three !p otocol,audio conferencing bridge
which can support traditional telephones ifitérnet Connected phones, and SIP devices
in the same conference call. Thereforé; the, audio conference server could locate at
both PSTN and IP networks. However, these sophisticated conferencing bridges are
usually aimed at enterprise clients. For general public telephone users, usually the
only available audio conference server might be the one provided by the traditional
telephone service company.

However, in the traditional conferencing architectures, Conference Service Providers
(CSPs) use circuit-based TDM audio conference bridge equipment to integrate con-
ferencing application logic, TDM interfaces, and audio mixing circuitry into a single
piece of proprietary networking equipment. Therefore, the end users are unable to
interfere the audio process that are manipulated by the telecom company. When the
audio arrives at the bridge, the processing time of bridge adds additional delay to
this audio stream, and then is sent to the receiver. Since the bridge processing time
are usually the same and the PSTN network is relatively stable, the end-to-end delay

doesn’t varies a lot.
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Note that in the PSTN audio conference architecture, the audio bridge bridge lo-
cates at the CSPs which is out of reach of general public. Any attempts to participate

in the intermediate audio process is unlikely to be available.

2.1.2 Video Conference Architecture

On the other hand, for the video conference, most conferencing applications utilize
the open structure of IP network which makes the conferencing architecture more
flexible than the PSTN network. In [8], the authors collect and conclude the recent
experiments and reassessment of practical implemented video conference systems.
These systems can be roughly categorized into two categories which are the centralized

and the distributed categories.

2.1.2.1 C(Centralized Structure

In a centralized video conferencing stfucturé;- usually a central coordinator called
the Multipoint Control Unit(MCUY which is in charge,:(:)'f the video process is required.
All the video streams from different conferees converge,onthis MCU. Then the MCU
may first decompress all the r‘eceivedr .yi_l(leo Sftreams For ;each specific conferee to
whom all the other video streams are d “ st@heF’MCU maysre-compress the required
video streams depending on his band{n dth,‘lrtijaisplalu}ﬂf‘ resolution, and other capabilities.
The authors in [9] provide anr’expekri enfal’ analiysis t‘(‘)vs"‘upport video adaptation
over an extremely large range of dis%lay requir%rlnepts. * This decompress and re-
compress process are usually maﬁaged by a tra,r_lscgﬂer. In other words, the MCU
may decompress all the video streams aﬁd then éompress the required video streams
for each specific conferee according to their capabilities.

The MCU usually has larger bandwidth than a regular participant so it can re-
ceives all participants’ video signals and disseminates them after properly processed.
Since all the video streams gather at the MCU, the synchronization of audio and video
signals among conferees can be done by the MCU. The computation load is mostly
on the MCU, so the end system can be relaxed from considering the computation ca-
pability. In order to make everyone in the video conference can see everyone else, the
MCU usually merges all the received video streams into one single video stream where
every participant occupies a certain location in the output video frame. The video
combination problem is another research issue in the field of video conferencing, as
in [10,11]. For the audio streams, a mixing process as performed in the audio bridge

is applied. The timing relationship between the combined video and audio stream is
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updated while combination. These audio and video mixtures are recovered by this
updated timing information at the receivers to achieve synchronized playback.

However, the centralized schemes have their inherent defects. (1) Although the
MCU has larger bandwidth than regular participants, but still its bandwidth is lim-
ited. Besides, since the MCU is in charge of the transcoding process for all the con-
ferees, the complexity may increase rapidly as the number of participants increases.
From this point of view, the scalability of the MCU is bad. (2) Since each conferee
has to transmit to the MCU even though they might be near each other, it requires
long round-trip delays for resource allocation and cannot react to fast changing con-
ditions in both communication channel and video content. (3) The high cost and
management complexities make MCUs suitable only for larger business applications.
(4) When the MCU is down, no conference can be hold.

2.1.2.2  Distributed Structure
: =

While a centralized strueture-is-usually adoptedufo"r enterprises which have more
privacy and security concerns, it is not avallable formost-general public. Therefore,
for general video conferencing service, a d1str1bute‘d conferencing structure is usually
applied. Instead of centralized conftr 1 emF designers can realize conferencing
systems with a distributed fashion k}y utll mg 1"ebe1ver—dr1ven layered multicasting
algorithms and/or multihop forward error *Godlng (FEC) transcoding to respond to
time varying and heterogeneous channkl COIldlthlFilé. A2

Since multiple streams are exthanged among, nultiple users, these streams may
share the same transmission path. A-dynami¢ resouree allocation for each stream with
awareness of other coexisting streams in the same path is more efficient than a static
allocation. In [12], the authors explore the multi-stream diversity to provide better
video quality and study how to perform cross-layer multi-stream error protection in
a distributed manner.

The most critical problem for a distributed architecture is the limited bandwidth.
Unlike the centralized architecture, where MCU has higher bandwidth than an ordi-
nary node, the distributed architecture requires each conference node transmits its
video to all the other nodes. Therefore, many bandwidth saving techniques are pro-
posed to leverage this problem, including application layer multi-cast and a request-
for-viewing system, as stated in [13,14]. Note that in this distributed structure video
from different conferees follows different network path to the receiver, the audio/video
synchronization is handled for each stream.

In conclusion, the video conference architecture can be categorized into centralized



2.2. RELATED WORK 10

or distributed categories. The received video streams is usually a combination of all
the other conferees’ in a centralized structure while video streams are individually
received. No matter what video architecture is applied, in the proposed scenario, the
audio conference and the video conference are held in different network. Since the
audio and video conference is unlikely to be coordinated at a central device, we focus
on solving the asynchronism problem of audio and video at the receiver side in an

end-to-end manner.

2.2 Related Work

In a typical video conferencing system, audio and video signals are captured pe-
riodically at the source, fragmented into media data units (MDUs), packetized and
transported in real time to the destination in separate streams. To faithfully recover
the original form of the audio/video presentation, both the temporal ordering among
the MDUs in a stream and the relativeitemporal relationship among streams need to
be maintained. In other words, vide® conferencingsapplications require both “intra-
stream synchronization” and #inter- stream synchronizatibh” A common solution to
this problem is to use a receiving buffery ysghleh an smooth out the delay variations
for each stream at the destirfation. By Comap? mg, the object“timestamps as suggested
in MPEG standard [15], the 1reeeivedT

and then decoded and presented according fo a pTedetermmed fixed timeline. In the

DUE&re ﬁfst placed-into a buffer temporally,

following part, we review several relateﬁ papers.in bynchromzmg audio/video streams.

2.2.1 Conventional IP Audio—Video Synchronization

In most IP synchronization schemes, receiving buffer is essential as afore-mentioned.
The receiving buffer size determines the resistance of synchronization control scheme
to network delay jitters. Larger buffer size makes the scheme more resistant to large
network jitters. However, increase in buffer size also increases the delay before play-
back. For real-time services like teleconferencing, large delay may decrease the in-
teractivity of conference. Therefore to make a compromise, most research endeavors
propose adaptive buffering schemes for synchronization control as in [16-20]. Authors
of [16,17] proposed an adaptive buffering scheme by piecewisely equalizing the end-
to-end delays of multimedia objects in order to suppress the synchronization phase
distortion with minimal trade-in of buffering delays. The generating time of mul-
timedia objects are time-stamped by the common local sample clock which is the

synchronization source shared by all outgoing media streams. At the receiver side,
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objects along different streams are scheduled to playback according to their playback
clocks to which a control mechanism using time-stamps as reference is employed.

Recent research schemes usually utilizes the timestamps included in the RTP
(Real-time Transport Protocol) packets which starts with a random number and
steps forward by sampling period to identify the matching audio and video slices for
synchronization playback. Authors in [21] proposed an adaptive transmission scheme
to ensure the continuous and synchronous playback of audio and video streams. Their
proposed adaptive scheme is composed of three stages, namely, (1) dynamic reorder-
ing mechanism, (2) decoding-recovery mechanism, and (3) adaptive synchronization
mechanism. The first two stages reorder the out-of-order packets and recover the
possible lost packets by proper algorithm according to the network status. The third
stage adaptively adjusts the queueing length to resist inter-arrival jitters and variances
of the end-to-end transmission delay. They claim that their adaptive synchronization
algorithm is able to control the.queuing length precisely to eliminate the time-based
skew between the audio andivides streams andlminimize the end-to-end delay.

In [18-20], the authors proposed an adaptive delz;y and synchronization scheme
that (1) directly incorporates the quahty requ;rement of the application into the pa-
rameters of the algorithm, (2) calculates. e SynFC}fllronlzatlon errors in real-time, (3)
piecewisely adjusts end-to-end delay| 'y cogﬁtrollfng the virtual local clock to adapt
to the network delay variation, ani 4)

synchronization error occurs. .This

apefu}ly recovers the synchronization if
S }Peme monitﬁd\ts the'synchronization errors and
estimates the delay jitters among”adjacent Media Data Units in real-time to com-
pensate for the delay jitters. While [18] focusr"mainly on the synchronization for
real-time streaming multimedia applications, {19,20] concentrate on the audio/video
conferencing application. By maintaining a virtual clock according to the playback
time and arrival time at the receiver side, the synchronization control scheme can
adjust the clock to match the QoS requirement. In order to reduce the computation
load of synchronization while computing the correct match from the received RTP
and RTCP SR (Sender Report), authors in [22] proposed an efficient decision rule for
calculating the playback time without floating point operations.

To sum up, the above mentioned research mostly utilizes adaptive buffering schemes
for synchronization control. The basic control, which consists of appending synchro-
nization information (timestamps, sequence number, etc.), is essential for all algo-
rithms. However, in the proposed scenario, audio conference is controlled by the
telephony company while the video conference is held on the open IP network. Audio

signals from all the conferees are sent to the mixer owned by the company and then
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these signals are mixed and sent to other conferees. There is no timestamps of specific
speaker in the mixture. Therefore, conventional ways of audio/video synchronization
to match video and audio timestamps is not applicable.

Authors in [23] propose an interesting synchronization methodology that requires
no timestamps for audio/video synchronization. In this methodology, audio data is
embedded within the corresponding video frames by means of high bitrate information
hiding techniques. On receiving the video frames at the receiver, the embedded audio
data is extracted and played along with the host video frame. Nevertheless, in the
proposed scenario, the received audio stream might be a mixture of speakers from
different ends, it is impossible to embed the mixture in advance within the video
frames.

In conclusion, conventional synchronization control schemes usually depends on
the common timestamps on the audio/video streams for inter-stream synchronization.
The timing information can be recovered: by these timestamps. Conventional IP au-
dio/video synchronization schemes malnly aim at providing.an adaptive transceiving
scheme to accommodate the Varylng network delay and Jltter which may disorder the
= Q) |
2.2.2 Lip Synchronization | H"i:' p |

I :
As described in the previous'subsection; eonventional ‘works on audio/video syn-

receiving packets or even incur’ packet’ drops [ o

chronization mostly require the:-;fiminy Pnformatioﬁ of audio and video to be appended
in the media streams. However, an the proposed scenario, even though the timing
relationship between audio and video ¢an Be stémped on both streams, the audio
conference server in the PSTN network might destroy this information while mixing
the audio streams from different conferees. Therefore, the receiver can only observe
a multiple-source mixture with no individual timing information of specific conferee.
Hence faithfully recovery of audio/video playback according to the timestamps is
infeasible.

Since the timing information attached at the sender is discarded while transmis-
sion, we think of another direction of retrieving the timing relationship between audio
and video streams at the receiver side. Since the only available useful information
from the audio conference is the audio stream itself, the most possible method of
recovering the timing relationship might be comparing the audio content to the IP
video stream.

As shown in Figure 3, the video stream and audio stream leave the sender to

different networks. While the video stream remains unmodified to the receiver, the
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Receiver

Figure 3: The concept of content comparison

audio stream may accumulate extra Spref_i%fG@’ .¥oice and arrive as a audio mixture.

The concept of timing TeCOVery, b}y(':opt@nt cqiﬁp‘*/a'risog is to compare the received

)
9y .

atioln;'tbi’:_the received audio stream

Y

-

video stream containing onkﬂ 'th(:; qisgn(ié
which might be a mixture. '

Since it’s the spoken s‘peezfgh that i ggﬁiéﬁs‘egmen‘cs, the content
comparison is related to ﬂie research ar ) Sync bo—nizerlm?c;ion which is a techni-

cal term for matching lip movements

meanings of the term liﬁ;.sy;}e,
visual and audio signals dTm.ng»p t-

The lip sync techniques"'.'@};e.p'ﬁ.'-B{g-.é' xn‘rcerest,mg applications such as

automatic lip movement for anfm.at?én @ﬁragtei’té}";as ﬁrppi}Sed in [25,26]. The authors
extract audio features from the inpift s‘pe;pg:l} and then use a pre-trained neural network
model to map the pronounced speech to suitable visual lip movement and then show
on the character’s face. Since in this application the lip movement is pre-stored in
the phoneme database, it requires less image processing load, and thus is claimed to
be used for real-time application.

However, in the considering scenario, the lip sync is more related to the research
area as in [27,28] which is usually applied to lipreading, speech recognition, and
audio/video synchronization. For all of these applications, the following issues should
be addressed:

1. face localization,
2. facial feature localization (e.g. the eyes and the mouth),

3. lips modeling,
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4. lips tracking and motion analysis,
5. identification and recognition.

On receiving each video frame, the human face should be first located, and then
the facial parts are identified. From the partitioned facial components, the lip shape
is analyzed and modeled. Combining consecutive video frames, the lip movement is
characterized for further identification and recognition. Meanwhile, the human speech
is segmented and characterized by speech features. Both the characteristics are fed
to the audio-to-visual model to find the correct mapping for matching determination.
Note that the matching determination is directly derived from the audio-to-visual
model which might not necessarily use phonemic analysis. After the matching deter-
mination, the timing information could be recovered from the results. Nevertheless,
the lip synchronization techniques have some inherent defects to be applied to the
proposed scenario which is discussed later.

An important issue of lip symnehronization te.the proposed scenario is the com-
putation load. Since most audio-to=video lip synchromzatlon research focuses more
on the off-line applications, the computation load introduced in the image processing
stage is usually not the'issue to be ¢ol 31 ﬁHowever in the proposed scenario,
even though the time for obtaining tf mg f:)'I“I}l&tlon is not as critical as real-time
applications, larger computation time may rmakq the algorlthm less reactive to the
variation of network charaeteristics, | %fter the cpmputation of timing information,
the network condition might have‘changed.“Another issue is the large audio-to-visual
model. In order to achieve bettersidentification’ performance, training data should
be used to establish the model which consequently require larger memory resource.
Because in the proposed scenario the teleconferencing devices could be a dual-mode
handset which has limited computation power and memory resource, the lip synchro-
nization techniques might not perform well in this scenario.

Another problem occurs when the audio stream consists of multiple speakers’
speech. Since the audio-to-visual model is trained by clear speech with the lip move-
ment, speech mixture may confuse the mapping process, thus resulting in wrong
judgments. This is the very problem that makes lip synchronization unsuitable for
the proposed scenario. In conclusion, from the discussions in this section, we con-
clude that directly compare the audio segments to the video frames might not be

applicable, either.



CHAPTER 3

A FRAMEWORK FOR AUDIO-VIDEO
SYNCHRONIZATION

From the previous chapter, we conclude that (1) in the proposed scenario the
asynchrony between audio and video stream could be a severe impact on conferenc-
ing quality, (2) traditional synchronization control schemes are not applicable for
their reliance on appended timing information at the transmitter, and (3) recovering
timing information by means of lip synchronization has its inherent challenges. In
this chapter, we propose a synchronization framework based on the concept of direct
comparison of transmitted contents from. PST‘N and TP networks. We extend this
concept further to audio toaudic ynelifonizatiomarid-discuss the potential problems

of using audio streams from bothssides for synchronizatien,

3.1 Synchronization F@éwork
1wl

As concluded in the related work of liﬁ;:éynchitonization, directly comparison of
audio segments and video framés might not be sui;fcéble. ‘Pherefore, we try to simplify
the problem so as to avoid the requirement of !dudio/video comparison. Instead
of considering synchrony in video randl—'audio streams, the problem can be solved
by simply synchronizing audio streams from different networks. This concept of

simplification is elaborated in the following paragraphs.

3.1.1 Concept of Simplification

Inspired by the afore-mentioned related work [23], adding audio information in
the video stream is attractive because the timing information between this appended
audio and the video streams is easily derived. At the transmitter side, not only
video frames but also audio information related to the current audio stream are sent
through the IP network to the receiver as shown in Figure 4. This direct timing
relationship between appended audio and video streams can be achieved by either
timestamping the audio information or embedding the hashed audio information in

the video packets as suggested in [6].

15
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Figure 4: The concept of problem simplification

As a result, after the extra audio infqrn}ation from the IP network is received
|

Y
to determme the tlmmg relatlonshlp with the

at the receiver side, it can be Psd}d
PSTN-audio stream. Conseql':tent;ly,

the extra information and lsadeo fr

audio streams can be ach‘teveph
5T |

3.1.2 Proposed FraI:ﬁ':ewo

Based on the concep'ﬁj'r (")ﬁ"a

framework as shown in Flgnreffa ‘
audio conference server locart‘ed 11;.1 the @kk. Co'hferees attend this audio
conference via various kinds of teieconfefehcmg ﬂévmels, 'lnzzludmg a traditional POTS
phone, a GSM phone, a dual-mode poeﬁeta' PC, a dual-mode smart phone, and even
a laptop using IP soft phone. On the other hand, the video conference is held only
among the dual-mode pocket PC, the dual-mode smart phone, and the IP soft phone.
The video conference could be supported by either a central video conference server
or in a distributed manner.

For the conferees of video conference, since the audio stream and video stream are
from different network, we propose an end-to-end audio/video synchronization module
equipped with them so as to accommodate the asynchronism between audio stream
and video stream. This audio/video synchronization module recovers the timing re-
lationship between audio stream and video stream based on an audio synchronization
scheme without any help from the audio or video conference server. Therefore this
end-to-end approach can recover the timing relationship without modifying the net-

work infrastructure.
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A more detailed block diagrzfméof P )
in Figure 6. When the conferee recei-ves' _t.flé {}i(iéo stream from IP network and au-
dio stream from PSTN network, both of them are fed into two buffers which are the
playback buffer for audio/video playback and the additional buffer inside the synchro-
nization module for synchronization determination. We design the synchronization
framework as trigger-driven since once the audio and video streams are synchronized,
there is no need to waste computation power on the synchronization algorithm if the
network condition doesn’t varies a lot.

Whenever synchronization is triggered, the synchronization module feeds the pre-
queued data inside the buffers to the synchronization algorithm which compares the
above data to determine the matching point of these two streams. Note that data

are pre-stored in the buffers so as to eliminate the data collecting time while synchro-

nization is triggered. The synchronization algorithm is the core of synchronization
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module. It locates the matching point of these two streams and then uses this infor-
mation for timing recovery. The resulting timing relationship is fed forward to the
playback buffer where common synchronization control schemes can be applied.

Additionally, whether the received audio/video streams need to be synchronized
depends on the synchronization trigger which can be determined by simply periodi-
cally or by network statistics obtained in the RTP packets. For example, according to
the network statistics in IP network, if the delay or jitter exceed a certain threshold,
the trigger can conclude that the video and audio might be asynchronous, thus trig-
gering the synchronization. Further discussion on the design of the synchronization
trigger is out of the scope of this work, so it is not included afterwards.

In conclusion, the proposed approach to synchronization is try to directly compare
the received contents from PSTN and IP network for timing recovery. In the following
context, first a measurement of asynchronism of the proposed scenario is performed
so as to motivate the requirement of synchroili'ilzation. Then the content used for

comparison in the framework is discussed in the following part.

3.2 Asynchronzsm Measurement

‘ r-i- ik |

Before the discussion of synchro 1zaii|uﬂi’ alg(;rlthm the first question is that
whether the asynchronism between audio eﬂld v1(11é0 really affects the conference ex-
perience. In other words, if no synch 0 1zatlen is Performed will the audio and video
streams be so asynchronous that conférees may féel uncomfortable7 In this section,
several experiments are conducted to evaluate ithe degree of effect of asynchronism
between PSTN audio and IP video in the propesed scenario, in order to motivate this
research. The results reveals that conferees might feel perceptually uncomfortable in

terms of delay difference and variance between audio and video streams.

3.2.1 Experiment Setup

In order to inspect how severe the asynchronism between audio and video may be,
a simple testbed, as shown in Figure 7, is set up to measure the delays of audio and
video traversing over different networks. According to the difference of delays of two
sides, whether this asynchronism causes perceptual awareness can be determined.

On the one hand, for measuring the end-to-end delay of audio conference, using
common one-to-one phone call is not enough since conferencing might include extra
delays while processing the multi-end audio streams. We use the multi-party call

service provided by CHT Telecom to hold an audio conference. Three conferees
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When the audio conféjieﬁae 1

nd a laptop equipped with
t}us rg:??nference.

is kept silence. The speaker
pronounces a beep sound tci tﬁgl dﬁ%l—mbde handset. The beep
sound goes through both tthST __: etw t—he%éxdm,l?lput from the dual-mode
pocket PC and the open space '(th-e §6%téd "11_1_15‘)?%?,1'51‘{1’:@%}1(3 laptop. Then these two
waveforms are recorded using GoldW&-L\féL![éé]ﬁ'a “the same laptop. In that way, the
difference in time of these two waveforms which represents the end-to-end delay can
be obtained manually, as shown in Figure 8. In Figure 8, there is a chain of input
and output sets. Within each input and output set, the differences of waveform start
point represents the end-to-end audio delay.

For the video stream delay measurement, the main objective is to inspect on the
delay of video transmitted along the IP network. Therefore, for simplicity we make the
laptop perform as a video streaming server and the pocket PC as a streaming client.
Both the streaming server and client use wireless connections for network access, so
as to simulate the situation for handsets. While the streaming server sends out QCIF
format video to the client, the laptop simultaneously sniffs on the stream and record
the transmitted packets. At the client side, another packet sniffer is included to sniff

on the receipted packets. From the recorded time differences of the sniffed packets,
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Figure 8: The recorded audio input and output from the audio conference

we can compute the delay of the video stream

Note that, since the packet snlllfﬁné 1S Herformgd 0nrd1fferent laptops, the time clock
might be asynchronous. There-for%,, before the sniffing Qroeess these two laptops have
to be synchronized by Network Ti otocol \‘“proposgd by [30]. Although the
NTP might not be able to p_@:ﬁf@,%m

1}W'O laptops authors in [31]
claim that the synchronlzatlon SITOT i

liseco ds in LAN’s and a few tens

of milliseconds in WAN vai‘ro
Another aspect of th-is -V_id

stream to the receiver. Slnce mo! Vi co, conférence in a distributed
manner may increase the tra.fﬁéf load,l _ delay may also be increased due
to the limited bandwidth. o w0
e _,r =1 ] ;| l r
<O s .

3.2.2 Measurement Results

The measurement of audio conference delays is shown in Table 1 while the delay of
video packets is shown in Figure 9. For the result of delay in audio conference, we first
measure the delay of simple one-to-one calls as a comparison to the delay of 3-party
calls. We can observe that in a 3-party call the delay is usually more than 400 ms,
while the delay of a one-to-one call is usually between 300 to 400 ms. Although the
average delay value may vary among different time of experiment, the delay variance
is kept small during the same call.

Furthermore, the 3-party call usually results in longer delays than the one-to-one
call. This additional delay might be introduced by the conference bridge that mixes
the received audio and dispatches to the required speaker. Since the PSTN network

is run and controlled by the telecom company for mainly audio transmission, the
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Table 1: Measurement of audio conference delays

1 to 1 talk Delay in ms Average
First call | 376 373 374 376 374 | 374.6
Second call | 327 321 326 322 328 | 324.8

3-party talk
First call 412 412 414 414 415 413.4
Second call | 434 438 442 435 441 438.0

Table 2: Measurement of video delays

End Point Delay in ms Average
LabtoLab [ 6 6 7 8] 68

Library to Lab | 2581024 28| 27.0

network reveals a rather steady and QoS—guaranteed behavior. Therefore, the delay
of audio conference is usually"maintained at a’certain level and the delay jitter is
usually small. --a- c‘.‘l"} |

On the other hand, the vided delay ml?a'srﬁ'feql in two places. While the streaming

server always stays in our lab and i onngéted *to our own AP (named TONICI),

the streaming client is connected to he NTU campus AP-either in our lab or in the
library. The result is listed in Table 2 while Flgure 9 shows one of the experiments.
The results show that the delay is only,around ten mﬂllseconds while the streaming
client is connected to the NTU AP near our lab, and also the variation in delays low.
This may be due to the low traffic loads of these two APs and the short distance
between them since they are in the same building which implies fewer intermediate
routers are traversed. However, for the delay measured when the streaming client is in
the library, the delay value is larger and there are several spikes indicating large delay
variation. Since there are more WLAN users in the library and the longer distance
between APs requires more intermediate routers to traverse.

The difference of measured audio and video delay is about 300ms. According
to [32] which claims that £160ms of asynchronism between audio and video is ap-
proximately the threshold for human awareness, a 300ms skew in synchronization
is large enough for human awareness. Therefore, the synchronization algorithm is

required even when this simple environment.
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Although the video delay value 1b Sm'EEHAN"hIF may Inot be the case for practi-
cal scenario, these measurement.has r Véﬁ’_ "fh# ey eharacteristics of IP network.
When the traffic traverse through a {long d an(lie the growing number of interme-
diate routers and the included trafﬁcl 1Fads from ? her users may add uncontrollable
delays to the traffic. The s1tuat10n becomes even worse when the link involves wire-
less connections since wireless transmission could be severely affected by the current
environment.

To compensate for the delay variation of IP video packets, playback buffers are
usually applied to absorb the delay jitter. However, if the network dynamic exceeds
the capability of playback buffer, buffer underflow or overflow may occur and thus
the playback time may be adjusted. Since the PSTN audio is completely ignorant to
this adjustment, the asynchronism may become larger. As a result, we conclude that

synchronization is necessary to provide a better conference experience.

3.3 Challenges of Audio Synchronization

Nevertheless, when the problem is simplified to audio synchronization, several
challenge might appear which might affect on the performance of audio synchroniza-

tion. We individually elaborate on the challenges in the following paragraphs.
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3.3.1 Distortion by Voice Codec

In order to reduce the bandwidth requirement and to increase the robustness to
lossy channel, the audio signals are usually encoded before transmission, especially
when the channel contains wireless connections. The widely used voice codec in PSTN
network for GSM and UMTS voice is the Adaptive Multi-Rate codec while in VoIP
application various types of codec such as G.723 and G.729 can be chosen from.

Since voice signal is considered to contain a lot of redundancy, the design of
voice codec usually remove the redundancy to a certain level, thus resulting in a
lossy compression. Since different network uses different voice codec, the discarded
components might be different, therefore, the recovered audio waveform might be
different. Difference in audio waveform might introduce a potential problem in the

process of audio matching.

3.3.2 Distortion by Noise

In practical conversation, more ot less noise is inctuded in the audio stream. The
noise could be due to different;sources such as thermal noiSé ‘and environmental noise.
No matter how the noise is induced, it d@gs.affec on the audlo waveforms. However,

introduced at the conferee, the effect o n01§b on qdmparlson might be less since both

for the conferee whose audio/video sTea;m?é‘re,to be synchronized, if the noise is
audio streams contain this noise." O ‘the other hand if the noise is introduced by
other conferees in the audio conferencé this nonseE adds additional difference to these

two audio streams.

3.3.3 Interference by Other Conferees

As illustrated in Figure 4, as the audio stream go through the PSTN network,
multiple speech sources might be accumulated by the conference server to form a
mixture and then is dispatched to the conferees. Therefore, the receive audio stream
from the PSTN network could be a mixture of multiple speakers while the audio
information from the IP network contains only the information of one specific speaker.

The synchronization algorithm may take the audio information of the specific
speaker to find a correct match in the audio stream from PSTN network. If the
multiple sources in the audio mixture are well-partitioned, namely, there is no over-
lap in time between different sources, then the synchronization still can perform well

since the audio of the specific speaker is undistorted. However, in practical audio
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conference, speakers might strive for making statements while keen discussion. Con-
sequently, it is very likely that multiple speeches may overlap in time. The waveform
of the specific speaker might be distorted by the overlapping speeches and thus put

a challenge to the audio synchronization algorithm.

3.3.4 Packet Loss in Wireless Connection

It is well-known that the unstableness of wireless connection may incur packet loss.
Meanwhile, in real-time applications, packet loss might not only be due to the loss
in transmission channel but also be in consequence of out-of-date packets. Therefore,
packet loss is very common for audio streams via wireless connection. In [33], many
algorithms that try to conceal the lost packets in the audio stream so as to recover
the original audio.

For speech signals, due to the characteristic of speech waveforms, usually the
concealing algorithm simply duplicatesithe pre\{i_ous received packet to fill in the lost
packet. As long as the gap is small-thistalgorithm cal achieve an acceptable quality
to human hearing system. Hewever;"this packet duphcatlon still distorts the original
waveform. Therefore, the synchronlzatlon algpnthm might” be confused to the loss-
concealed audio. Note that for the wi el nﬁeptlons in the path of PSTN audio
stream, the packet loss are usually F all as a lleSult of the wide coverage of base
station and the under-controlled PS netWOrk Hence in*the following discussion,

we focus on the loss of Wireless-;'COan;c{tlon in IP audio.

3.3.5 Reactiveness to Networi( Dynamics:

The synchronization may not require the capability of realtime process since the
synchronization is not triggered all the time. However, if the synchronization module
spends too much time on the computation, when the timing information is obtained,
it might be stale and useless. The situation becomes even worse if the network
environment is highly dynamic. Therefore, the required computation time for the
synchronization module is also an important issue in designing the synchronization
algorithm.

Regarding to Figure 10, when the synchronization module is triggered at T,igger,
the speech segments in the audio buffers (X(t) and X(t)+Y(t)) are fed to the syn-
chronization module. The required computation time for synchronization module to
obtain time shift 7 is defined as the time period Ty, specified in the figure.

To evaluate on the reactiveness of an algorithm, we apply the tic and toc functions
provided in MATLAB [34]. At the beginning of the synchronization module, tic
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Figure 10: Synchronization computation time

function is set to start a stopwatch. Then after the synchronization process completes,
toc is set to stop the stopwatch and then store the current elapsed time in toc,
hence, from toc we can obtain the computatlon time TsynC Nevertheless, since the
computation time is processor dependent different processor may results in different
computation times. Therefore ‘the to;,a.Lﬂop cqunt of the: synchronlzatlon algorithm
is also provided to show the relatlonsihlﬂ,padigtw ﬁops and computation time.

In conclusion, we have *simplifie thwah (szatzon problem to simple audio
synchronization. While the receiver i elveﬂjthe 0 audio.data, the synchronization
algorithm should be able to locate t matchmg ‘poing n the audio so as to recover
the timing information. Add1t10nall S descrlbeh mn the subsection above, the syn-
chronization algorithm should also Gonquer the afore- rnentloned challenge. Therefore,
in the latter chapters, we focus on the d1scuss1on of possible means of synchronization

algorithm and their pros and cons against the challenge.



CHAPTER 4

SYNCHRONIZATION BASED ON CROSS
CORRELATION

In the previous chapter, we have concluded that the synchronization problem
can be simplified to the synchronization of the PSTN audio stream to the appended
audio information in the IP video stream. This audio information come along with
the video stream could be a complete audio stream as in common video calls. Then
intuitively, the synchronization algorithm can be simply comparing the waveform of
these two audio streams and searching for a matching point where this two streams
are synchronized. &

Note that this audio stream arrived via IP Hetivork consists of only the speech
of the specific speaker who generates the video streamy while the other audio stream
from the PSTN network could be a mlxture of multlple confarees. Therefore, afore-
mentioned challenges may azise. In th1§ Chﬁer_, ‘Wé first examine on the effectiveness
of using time domain features of audio avef!_orm fot synchromzatlon against the chal-
lenges. Then we adopt the time domfn cross- Correlatlon to determine the similarity
between these two audio streams. La&ger correlatlon coefficient indicates higher sim-
ilarity between the comparing audio segments and thus suggests larger probability

to be a correct match point.

4.1 Time-domain Audio Features

As previously suggested, extra audio stream could be added to the IP traffic flow.
After these two audio streams are received, they are stored in the additional buffers
inside the synchronization module. When the synchronization module is triggered, a
segment of the IP audio stream is chosen to compare to the PSTN audio waveform.
The size of the PSTN audio buffer restricts the search range to be compared. Every
comparison chooses one segment of the audio waveform within the search range. The
objective of synchronization is to locate the most similar segment of the PSTN audio
to the IP audio segment. From this match we can determine the time shift between
PSTN and IP audio streams. Thus PSTN audio and IP video streams could be

synchronized, since the timing relationship between video and this IP audio stream

27
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can be reconstructed by conventional audio/video timestamps.

Although the waveform-comparing algorithm can use a simple square error of
the waveform samples as metric, small distortion to the waveform might severely
affects the effectiveness of this algorithm. Therefore, the synchronization algorithm
should be able to recognize the important trends or patterns in the waveform so as to
locate the time shifts. According to the conventional speech processing techniques,
the commonly used time-domain speech features that are used to segregate auditory
cues are the peak-to-peak period, pitch, and the envelope measurement, as suggested
in [35].

Since the waveform is easily distorted by noises, to acquire the features, pre-
processing stages, such as low-pass filtering and moving average, are usually applied.
The peak-to-peak period and the pitch measurement are related to the determination
of fundamental frequencies. Because of the quasi-periodicity of speech signals, in a
small period of time the neighbering peaks might reveal the inverse of the frequency
components. If the receiving speech is élear, péak—thpeak periods can usually serve
as the metric to differentiate different auditory cues. However, the performance is
seriously corrupted by the noises andy mterfere,nceg :

On the other hand, pitch is a relative ly ﬁra réhlable featurein obtaining frequency
information. The commonly adopteﬁi method “of pltch computation is the autocor-
relation function. Many variations o utocerrelat’llon 1s develop and adopted in the
field of pitch extraction, such.as [SJ] [ Within a| (ﬁertaln Tange, a windowed speech
segment is chosen to compute the'pitch"information’in:that speech segment. Due to
the quasi-periodicity of speech signals; the neighboring peaks in the autocorrelation
result reveals the fundamental frequency of the selected segment. If the speech signal
contains only single speech, the pitch detection technique can usually achieve proper
accuracy for auditory cue segregation. Even for speech mixtures, the multi-pitch de-
tection technique can still obtain fair performance, as long as the interference is of
different fundamental frequency or small.

The envelope is determined as a short-time moving average of the signal energy,
realized by low-pass FIR filtering of the squared signal. The filter order is chosen as a
compromise between envelope smoothing and ability to follow fast energy changes on
the boundaries of voiced/unvoiced parts of the speech signal. The shape of envelop
represents how the speech segment is packaged, and thus can be used for speech seg-
regation. For clean speech, the voiced/unvoiced parts and different speech segments
can be distinguished from the envelop. Since the high frequency noises are filtered

out by the low-pass FIR, energy envelop should be resistant to noises. However, if the
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speech is mixed with another speech, the envelop might reveal the shape of speech
combination, and therefore is different from the original clean envelop.

Although the afore-mentioned time domain features may perform well in specific
research fields, the performance might be affected in certain circumstances. However,
as suggested in the pitch detection research field, the autocorrelation function seems
to be robust to minor distortion of the original signal. Hence, we consider that the
correlation function might be helpful in comparing the similarity between speech

segments.

4.2 Cross-Correlation-Based Synchronization

Inspired by the research area of Correlation Pattern Recognition (CPR), we choose
cross correlation in the discussion of time-domain synchronization because it is con-
sidered robust and general in the field of pattern recognition, whose main goal is to

assign an observation into one of multiple choices, as.deseribed in [37].

4.2.1 Basics of Cross Correlation

Cross correlation which is widely adoptg;d. 1n mTa,ny area trles to capture how similar

measuring cross-correlation-similarit

or different a test object is from the + ]:ﬁt’cibjepjc The commonly used quantity of
Tjs thﬁJcorreLatlon coefﬁClent usually noted as

r, which is defined as

1

. '2%() i) 2, | (1)
VM) i 33 (yld)— m,)?

where z(7) and y(7) are the comparing objeets'and m, and m,, are the mean of them.

The definition of correlation coefficient r shows that at sample ¢ if (i) and y(4)
deviate from their own mean by a similar amount, the normalized product of their
differences to means may results in a value near 1. The overall correlation coefficient
is similar to the mean of the normalized products. This property implies that the
correlation coefficient can faithfully represent the similarity of two signals. Therefore,
If two comparing speech signals have similar waveforms, the correlation coefficient
may acquire a value approaches 1. This characteristic of correlation coefficient could

be applied as a metric in determining the similarity of two speech signals.

4.2.2 Cross-Correlation Synchronization Module

Based on the cross-correlation function, we design a synchronization module as

illustrated in Figure 11. When audio signals are received from either IP network or
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Figure 11: SynchromzatiEnfmodﬁ{l:_e' using cross correlation
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nization process begins, a matching w

‘ﬁaﬁdiogil_.ﬁers. When the synchro-

ific size is chosen from the IP audio

-"_l'

buffer and then sent to the sffnthpnlza 1oﬂﬁﬁ‘u el Accordingly, the synchronization
module will iteratively select.a “mat'c]_l g vxfln"i’jow om the: PSTN audio buffer, from
the beginning toward the end of Seal I

range, t 'rOSSacerrelate with the matching
window from the IP audio buffer Tl correlatlol g@efﬁment obtained for these two
windowed segments and the posmoh of;the PSTN matchlng window are recorded.
After each iteration, the matching windowsini the PSTN audio buffer shifts by a
certain search step while the matching window in the IP audio buffer remains still,
until the end of the search range. In the end iteration, the matching window with
highest correlation coefficient is found at the match determination stage, and then is

referred as the matched window. Thus the synchronization point is accordingly set.

4.3 Design Issues

Note that in the synchronization module, the matching window size and the search
step size are not yet determined. However, different size settings may affect on the
accuracy of similarity determination against waveform distortions. Therefore, in the

following parts, the effect of parameter settings if examined.
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Auto-Correlation of Speech with Different Window Size
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Figure 12: Auto-correlation with diffezent. niatching window sizes

4.3.1 Matching Window: Size P
. . k. a3l L

Practically, while synchrenizing two aue __(_‘J:IlPﬂltS, we can only have limit length
of signal for cross correlation, regardle as me mfim:_ching Wi_ndow. Signal of length of
the matching window from the IP audio buffer is'ﬁ'ross—qoyrélated with the matching
windows within the search ran@é: of t'hle PSEN au!dio__buﬂfér.

The first issue arises in that thé'ljéngtrh_ of matchiné‘:window may affect the accuracy
of synchronization judgement. Figure 12 shows the@utocorrelation of a speech signal
with window sizes of 8ms (64 samples) and 128ms (1024 samples). Since speech signals
are considered quasi-periodic, the neighboring waveforms may seem similar to each
other, as shown in Figure 13. Therefore, the resulting correlation coefficient might
achieve peaks at the quasi-periods. This characteristic results in the high correlation
coefficients around the zero-shift point.

The situation becomes even worse when the matching window size is small since
the containing signal information is less. Therefore the correlation coefficient still
remains at a high level at large shifts— over 400 samples (about 50ms) with 8ms
window size for example. When the original speech is unclean, noisy or interfered, the
correlation coefficient at the zero-shift point may easily be diminished to a level lower
than other peaks around the zero point, and thus resulting in wrong synchronization.

Therefore, in order to acquire distinguishable peak at the zero shift and suppress
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the coefficient at neighboring shift s6 as to achieve betier robustness against waveform

distortions, using a larger matching window seéms to be:one solution to the above
| \ s}
— Fa'

I

issue. §= | i
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4.3.2 Search Step Size I m | ‘i

Another parameter to cons%_der is!tpe search s’%e;p. T‘hpﬁ. search step represents the
number of samples that the matching window step shifts at each iteration. Since
the search step determines the poséible"rbosition.s of .the matching window, different
search step implies that different part of the 'speech within the search range is cho-
sen for cross correlation. This implies that the the matching window might skip the
correct matched window while searching within the search range. This phenomenon
is referred as the matching window misalignment. As illustrated in Figure 14, the
matching window starts at different positions of the PSTN audio buffer in each itera-
tion, according to the search step. It is possible that the matching windows might not
start at the same position as the correct matched window. For example, in Figure 14,
the correct matched window lies within the third and the forth matching windows,
instead of exactly the third or the forth matching window.

However, if the correlation coefficient obtained at the neighboring matching win-
dow, which covers the correct matched window, are still larger than the windows far-
ther from the correct match, the determined synchronization point might be shifted

from the correct point by an error bounded by he window size. Nevertheless, the
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Figure 14: Concept of matching window misalignment

autocorrelation of speech shown in Figure 15 suggests that the correlation coefficient
drops steeply when the time shift is only a few samples away from the zero point.
Hence, choosing the segment with largest coefficient as the matched window may
result in wrong judgment. :

In order to overcome the mzitching window: miSaiignment problem, the search
step should be as small as possible. The safest search'step:to ensure that the correct
matching window will be checked is of:ngl_;_rsg“gthé l—samplje step size which implies

=l
that every possible matching window! within*the Féarch range is examined.
‘ L

"'L‘, | :

4.3.3 Short Conclusion L as |
: \ | |

To sum up the discussion orl desigh issues of us‘iﬁg,‘crossrcorrelation as the synchro-
nization algorithm, we conduct an éxpe];iment o the berformance of synchronization
using cross correlation with different matehing window sizes and search steps. A
speech is cross-correlated with its decoded version after G.729 codec which includes
a time shift of 60 samples. The result is shown in Figure 16.

In Figure 16, we determine the accuracy of the algorithm to allow a £10ms (80
samples) error range. It is shown that even larger window size can guarantee larger
accuracy, however, for search step larger than 4 samples the accuracy may saturate
and couldn’t reach 100%, regardless of the window size. The reason to this inaccuracy
is because the search steps larger than 4 samples we used are not factors of 60. Hence,
the matching windows within the search range can never be aligned to the matching
window to be compared. However, for search steps of 8 and 16 samples, since they
are small relative to 60, they might have a larger probability to locate match points
within the error range. Meanwhile, for step size larger than 16 samples, the accuracy

is too low to be acceptable.
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Figure 16: Accuracy of cross correlation with different settings
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The result in Figure 16 suggests-thatlarger wind-QvG size and smaller step size can
ensure better accuracy of the Synchronlzatlon algorlthm However, larger window size
implies more samples to be computeqll in :hhe leo.ss,correlatlon while smaller step size
implies more matching windows to be ' rwéhhted The, complexity might be an
issue for the devices with limitedicomputation po‘t\rer Hence, we try to analyze the
possible complexity for different WinT sizes and

tlle counts cﬁf

Cxcor with search step S can be de’oermmed as C! XCOR | SJ +1. For each computa-

earch stéps
For a search range of T samples Fcross Correlatmn to be computed
tion of correlation coefficient, according to Equatlon 4.1, the number of multiplications
contains the multiplication in the numerator, the two squares in the denominator, and
the multiplication of the two summations in the denominator. Besides, although the
square root requires more computation, we treat it as a multiplication here for sim-
plicity. Therefore, the amount of multiplications in each correlation is about 3N + 2,
where N is the number of samples in the matching window. The total number of

multiplications for the complete synchronization point searching is

T
NMultiply = (3N + 2) X CXCOR = (3N + 2) X (|_§J + 1) (42)

Assuming that the search range is 1 second, the required number of multiplications
for synchronization for different window sizes and search steps is shown in Figure 17.
From Figure 17 we can observe that if a search step of 1 sample is chosen, the required
multiplications grows fast as the window size increases. Although the 1-sample search

step can ensure the correct matched window to be searched, a larger matching window
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Figure 18: Computation t_ime for 's'ynchfoiiizaticﬁ)n using cross correlation

is essential for suppressing neLghborln_g_goefﬁment peaks as afore-mentioned. Hence,
the number of multiplication in/the Syry;hronliaﬁldn algorlthm might reach the order
of 108, m] T | I

Different CPU implementation might sqgnd (‘ili erent CPU cycles for multiplica-
tion. Assuming 10 CPU eycles is req‘t edfor one oatlng pomt multiplication, for a
500 MHz CPU, the Synchromzatlon

nization point, and thus making the synchronlzatlon ‘module less reactive to network

ght_spend LL few seconds to learn the synchro-

dynamics. To acquire a clue of how much the computation time is required, we use
MATLAB to implement the cross-correlation-based synchronization algorithm and
measure the required computation time by the tic and toc function. The synchro-
nization process is performed on an laptop with single-core 1.73GHz CPU and 1GB
RAM while the search range is set to 1 second.

The computation time is shown in Fig 18, along with the flop count in Figure 19.
From Figure 18, we can observe that the required computation time for synchroniza-
tion may grow to tens of seconds if the search step is small and matching window
is large. The flop count in Figure 19 shows the same tendency. Note that the flop
count analysis results in a similar order of numbers as in Figure 17 where only mul-
tiplications are considered. Therefore, while choosing the search step and matching

window size, this issue should also be considered.
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Waveform of AMR and G.729 Decoded Audio
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Figure 20: Decoded waveforms of speech signals

4.4 Performance valﬁatiif;h ™

In the previous chapter, .the possible challenges -u'for _audio synchronization are

elaborated. Whether cross éc")f]r'elatio’f?a}} ove*f%olfwe those Challenges is discussed in
I’H\".- ] L I

4.4.1 Codec Distortion m l 1

LTS |

the following parts.

To simulate the result of rea;i' éudi@ *ignals thel dio Slgnal should be encoded and
decoded using common codee apph:ed to.2G/ 3G phone or VoIP. For the traditional
telephony system, Adaptive Multi-Rate (AMR) compressmn [38] is usually applied to
compress the audio signal, while for the VoIP system, among the various voice codecs
G.729 codec [39] is chosen for simulation here. Part of the decoded waveforms is
shown in Figure 20. We can observe that although these two waveforms are different
in temporal structure, they have similar variations in time. This is because different
codec may neglect different time redundancies while the frequency characteristics are
preserved.

Since the decoded waveforms have similar variations, the correlation should still
maintain at high level. Figure 21 shows the correlation coefficient with different
window sizes. Since the short-time temporal structure is modified by the codec, if a
too small window is chosen the coefficient might have a low peak at the 0 shift, and
thus is easy to be affected by other distortions. However, with larger window size,

the correlation has a sharp peak at the 0 shift and quickly descends as expected.
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Figure 21: Correlation coefficients of décod@d waveforms
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4.4.2 Noise Distortion | -f'j"-_g::"iji.i“l |

Since the thermal noise is the mosti ‘ n-qu%lrl;;o{mce of noise, we focus our discussion
on the distortion by thermal noise, which ,:is%{hsu%ml‘i.iy modeéled as an Additive White
Gaussian Noise (AWGN). Thef;'i/ariank:e (02) of }F}r{le AWGN determines the energy
level of noise. By adding the AWGN with diffe,_renﬁ:"énergy level () to the source
speech, the effect on correlation (r) is shown tn Figure22. The upper two graph shows
the waveform and correlation with (2" ="0.0001). The correlation seems not to be
affected by this small noise. However, as the noise energy increases, the correlation
coefficient drops. Note that a noise with 0.01 energy level is almost the energy of
lower volume parts in the source speech. Therefore, the effect of noise at this level is
comprehensible.

Since the coefficient at the 0 shift is lowered by the noise, the accuracy of corre-
lation might also be affected. Figure 58 shows the accuracy of synchronization when
one of the source speech is noisy. Both the source speeches are encoded and decoded
respectively according to previous discussion. By allowing an error range of +50ms,

we can observe that the accuracy of synchronization is lowered by the noise. Even

though a larger window size is chosen, the accuracy is still limited to lower than 100%.
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Figure 23: Performance of correlation against noisy signal
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Figure 24: Performance] f coftglatlplil against-interferences

4.4.3 Overlapping Speakers _ " { l| h F

Another issue is that during an audlo Conference there may be times when multi-
ple speakers speak at the same time. Hence,; the receiver may receive a mixed speech
combining multiple speeches from the PSTN auido stream. In order to simulate
this situation, the comparing AMR-decoded speech is mixed with other interfering
speeches. Since the source waveform is severely distorted by the interference which
has similar energy level, the correlation coefficient at the 0 shift point is apparently
lower. However, unlike the AWGN noise adds noises at the same level on the overall
speech, different speeches might not always maintain at the same high energy level.
Therefore, the effect of interference might not be as severe as noise.

Figure 59 shows the effect of interference on correlation. From the upper two
graphs, we can observe that the correlation coefficient is substantially lowered at
the 0 shift point. This suggests that in this situation, the cross correlation may be
vulnerable to other distortions. However, since the correlation value is also suppressed

at other shifts, the performance while a 250ms window is applied remains high. But
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Figure 25: Packet-loss-concealed speech waveform
for small window size as 100 ms, _sinae the cdefﬁment at the 0 shift is lower than
that of larger window sizes, 1t is horévulnerable o mterference and thus has lower

accuracy than others. o r,r_w ~

Va :—-f!'-i ] f
4.4.4 Packet Loss ' ,..;""a-*

In practical application;-the audio mgrﬂl from the IP network may be severely
affected by the channel condltlon rgh error rE e of the wireless connection and
network congestion may cause packet loss atythe reeciver side. Although delicate
packet loss concealment algorlthms, accqrdlng to [33] ,3'-might be applied to compensate
the effect of lost packets, most of the current-applications use the simplest way which
simply duplicates the packet in front of the lost packet. Asshown in Figure 25, several
packets, according to the loss rate, of the original G.729-decoded speech is lost and
concealed by the duplication of the previous packet. The packet size is specified to
contain 10ms speech. If more than three consecutive packets are lost, then the gap is
filled with zeros, as suggested in [33].

Graph (a) in Figure 60 shows the performance against packet loss. Because of
the duplication of the previous packet, the quasi-periodicity makes the coefficient less
affected by the packet loss. Therefore, the performance can remain higher than 90%
even though more than half of the packets are lost. However, the level of correlation
is still decreased by the lost packets, and thus makes it vulnerable to other sources
of distortions. Graph (b) to (d) simulate the situation that the IP audio is distorted

by packet loss while PSTN audio suffers from other interferences. The accuracy is
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on, Figurel 62 shows the performance of cross

the PSTN audio, even when the

correlation when multiple sourgéés__@f, diétortions occurs;, We can observe that the per-
formance is severely degraded by tﬁésé extra disf;“)rtigns since cross correlation bases
only on time-domain signal. Even though the distortion level is low, the performance
is largely affected. Additionally, although increasing the matching window size can

slightly improve the accuracy, the performance is limited.

4.4.5 Short Conclusion on Performance

From the above evaluations, we can observe that cross correlation can usually
sustain minor distortion on the waveform. But when the distortion level increases or
multiple distortions are included, the performance rapidly drops. Even large matching
window size can’t efficiently improve the performance. Additionally, to ensure high
accuracy of the synchronization algorithm, the cost of computation time, as shown
in Figure 18, may increase to tens of seconds. If the network is so stable that the
synchronization algorithm is not frequently triggered, the computation time for cross

correlation is not so important. Therefore, the search step and window size can be
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Performance on Multiple Sources of Distortions
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Figure 27: Performance of correlation against. multiple sources of distortion
choose to the required value to ensure accuracy However if the network environment
is highly dynamic, the synchronlzatlon algorithm should _be able to respond to the
varying network characteristies, Henci“é'—ﬂ%en cf’éss correlation may not be reactive to
this network dynamic. This has lead fo Eﬁb@(i aﬂ between high accuracy and high
reactiveness to network dyndmics. {’:_ !

In conclusion, cross correlation is vulne __blell o practi'eel distortions because it
only considers the time—domain;'signaE IThe perfo% anceé is limited. The main reason
that makes cross correlation times demandmg is that shott' time waveform is easily
corrupted by distortions, and thus large windows shetld be applied. On the other
hand, other time domain algorithms seem not as'robust as the cross correlation which
can directly respond to the similarity of waveforms. Therefore, in order to make the
synchronization algorithm robust and less sensitive to short-time distortions, audio
features in other domains, which can best characterize the behavior of speeches within

a certain duration, might need to be considered.



CHAPTER 5

SYNCHRONIZATION BASED ON MFCC

In the previous section, we have concluded that using cross correlation for the
design of synchronization algorithm may be vulnerable to practical speech distortions.
When multiple sources of distortions are included in the speeches, the performance
is limited. Considering the correlation formula, the reason might be rooted in the
comparison of each sample which might already be distorted and thus requiring more
samples to extract the trend of waveform variation. Hence, if a representation of
speech can extract several essential characteristics which might not easily be distorted,
then potentially it should be robust to.distorting sources.

Therefore, using other speech‘represeﬁtatioﬂs; which might transform the original
speech into other domains'is the foeus of this Chaptéi‘. This has lead to the field of
Digital Speech Processing (DSP )'techniques. In fh‘is chapferv, we adopt the commonly

used audio feature in speech recognitioff&é_i_t‘h?ifrqpresentation of speech for similarity

1} B 1

comparison. The robustness of this aiu«rid'featﬁ?eﬁ i§ evaluated in a way similar to the

- T

previous chapter. L

| 1 :

5.1 MFCC-Based .Séhchroniiéation
In the synchronization module;, onerrspeech ségment from the IP audio buffer is
used to search for a correct match in the PSTN audio buffer. The representation
should be able to recognize the correct speech segment among the search range.
This concept is analogous to the research of speech recognition which segments the
speech signal and search in the database for a match to this segment. As suggested
by any speech recognition research endeavors, Mel-Frequency Cepstral Coefficients
(MFCC) is the most widely used representation of speech signals in that it generally
can obtain better accuracy at relatively low computational complexity. Therefore,
whether MFCC is good enough as the representation for synchronization comparison

is first discussed.

45
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Figure 28: Block diagram for MFCC acquisition

5.1.1 Basics of MFCC

The process of acquiring the MFCC from a certain speech is illustrated in Figure

28. The block diagram mainly involves six stages which are introduced herein in

order.

Pre-emphasis For a speech sighald®[n] = u[n] #ugn], where u[n] represents lung

excitation and g[n] represents voeal tract-responsc, the first stage into MFCC
is to be pre-emphasized. Due to thea_phy&?loglcal charagcteristics of the speech
production system, high frequency e@ﬁponﬁﬁts are attenuated while speaking.
High frequency formants ‘may htve élnall amphtude with respect to low fre-
quency formants. However, hu\Ln n hearlng system is sensitive above the 1kHz
region of spectrum. Pre—emphaéls performs as.an hlgh pass filter which can
emphasize the high frequency patfto compensate the attenuation from speech

production.

z[n] = H[z] =1—-az"' = 2'[n] = 2[n] — ax[n — 1] (5.1)

Windowing After pre-emphasis, 2’[n] is then fed to a windowing function w[n] to

obtain successive and overlapping frames x;[n]. Windowing is needed because
theoretically, spectral evaluation approaches are in general for stationary signals
which only holds within short time intervals for voice signals. This is the so-
called short-time stationary. Usually each frame length ranges between 10 20ms.
Frame shift determines the length of time between successive frames. The most
widely used window shape is the Hamming window for its narrow main lobe

and low side lobes.

{054 0.46c0s22  n=0,1,......,L-1;
wln] =

0, otherwise.
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DFT and Mel-filter-bank Processing In this stage, spectrum X;[k] is obtained
by feeding x;[n] to an L-point Discrete Fourier Transform. After that, X;[k]
is then sent to a M-filter Mel-filter-bank. Each filter with different central
frequency may filter the input according to the frequency and use different tri-
angular function to get the weighted sum of filtered spectral components Y;[m],
where m = 0,1, ...... , M — 1. The filter-bank processing simulates human audi-
tory system which has high resolution at lower frequencies and the awareness of
pitch is proportional to the logarithm of frequencies. Within the bandwidth of
each filter-bank, human perception can’t identify the differences in frequency.
This bandwidth is referred to as the critical band.

X[k] = DFT{x[n]}, (5.3)
fit1
- Z wr'e Xeln), (5.4)
Lk=fila

where w; is the weightiof the-triamgular weighting function.

Logarithmic Operation Since phase-information is ot /important for human per-
ception but signal energy/is, the squa.red ansolute value of Y;[m] is used. And
then because logarithth can co reas’ﬁie dynarmc range of values like human
hearing system and make'a COI/ lved]nmse gaddmve logamthm is operated on

the output of squared absolute value of Y;g[ﬁ’l]
! |
iRy Log(lYt[ %) (5.5)

IDFT After the operation of logarithm, the lung excitation u[n| and vocal tract

response g[n] are now added together in log-spectral domain.
log| X k]| = log|U[K]| + log|G[k]] (5.6)

Since the log-power spectrum is real and symmetric, inverse DFT reduces to a
Discrete Cosine Transform (DCT) which produces highly uncorrelated features
y;- The components of excitation is now separated from vocal tract response
since excitation changes much faster than vocal tract. The feature extracted
from vocal tract response is easily separated by choosing only the first J compo-
nents which is usually set as 13. Each of these 13 components is usually referred
to as the MFCC bin.

1.7
Y —)—1.7=0,1,...... — 1< M .
Z mleoslj(m = 5) 7214 = 0.1 ] — 1< (5.7)
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Figure¢29: MFECC of a perioc(i"of sp{eech

In conclusion of the process for MFCC,.the mﬂun ob JeCtIVG is to extract the human
vocal tract response which is directly r spﬂﬁﬁ‘}e for human perception. On the other
hand, since the lung excitation is m{r hké'lan 1mpulse to:the vocal tract, the exact
excitation information is not necegsarily toﬁtr)—e pr?sﬁrved Note that due to the DCT
operation, the slower changing charact ristics of v'ocal tract is kept at smaller MFCC
bins. : i

Figure 29 shows the corresponding MFCC value of a certain speech. The value
is normalized to the first bin which represents only the signal energy and thus is
omitted in the algorithm. Since the analysis window is half-overlapped in length,
the resolution of MFCC columns is only half of the analysis window. From this
figure we can observe that the MFCC value is usually within +0.2. When the time-
domain signal looks similar, the resulting MFCC values are also similar. Based on this

characteristics of MFCC, next we will discuss about the synchronization algorithm.

5.2 Synchronization Algorithm Design

In this section, we discuss the design of synchronization algorithm for the syn-
chronization module. Inspired by [6], we slightly change the similarity metric in
the [6] and use this metric for searching of synchronization point. Generally speak-

ing, this similarity metric simply use the sum of absolute differences of the MFCC
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bins from different audio sources while a large difference is penalized by adding addi-
tional penalty value to this metric. Details of the synchronization algorithm is shown

in the following part.

5.2.1 Mathematical Analysis

Assume x,[n] as the unmixed speech signal from the IP audio buffer, z.[n] as the
speech signal from other conferees, x,[n] as noise, and z,,[n| = x,[n] + z.[n] + x,[n]
as the received mixed speech from the PSTN audio buffer. Since the first three
steps of MFCC process are linear, z,,[n] processed after the third step is Y,,[m] =
Yu[m] + Y.[m] + Y, [m], where Y, [m], Y.[m], and Y, [m] are the outputs of the third
step, obtained by individually feeding x,[n], z.[n], and z,[n] to MFCC.

Thus, the MFCC value of x,[n| and z,,[n] can be represented as the following

equations:
yl7) =3 og Vil Jewslj(m ~5)
e 7 (5.8)
<332 logltyifmlljpostjm* i)
M1 T | fﬁz l__, ||
ymlJj] = mZ 2log] |l IH Y[mﬂ+ TWCOSU (m=35)57) 59)
J=0 Al <M | *g
Subtract Equation 5.9 by Equatioﬁri'5.8 may obtain
] = ] = 3, 2t0g IR )
e 2log||1 + Yz[[:]] + };j:nq |Jcos[j(m — %)%} (5.10)
<= 3 doglt+ g7+ 157 e leoslitn - 3) )

Qm“ which
are like the inverse of “Mel-SIR and Mel-SNR”. The higher Mel-SIR and Mel-SNR,
the smaller value of y,,[j] — yu[j]. If the inverses of Mel-SIR and Mel-SNR are small

enough with respect to 1, the difference value will approaches 0.

In Equation 5.10, it reveals that y,,[j] — yu[j] is restrained by |;‘L[[:Z}] | and

From the above derivations, if the received mixed speech signal is in synchrony
with the unmixed speech, the difference of the mixed MFCC of PSTN audio and the
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Figure 30: MFCC-based synchronization algorithm flow

unmixed MFCC of IP audio should be sufficiently small. Additionally, in order to
further differentiate the similarity metric of the correct match from other shifts, a
penalty value is assigned if the difference is so large that this matching window is
very unlikely to be the correct window. The author.of [6] claims that since the mixed
MFCC contains the unmixed MECC, the‘mixed!"MFCC should usually be larger than
the unmixed MFCC. However, <ccording to Equation 5.10, if % or };"M
negative values, it’s possible-for ghe"mixed MFCCe, getra smaller value than the

yield

unmixed MFCC. Therefore, to compensate for thiis characteristic, the author of [6]
suggests to include an error factor to answecﬁrate judgement.

h ‘ L
5.2.2 Similarity Metric 'L |

- T |
! 1 |

In order to determine the S‘iﬁli]alﬁty of receivé(f speecﬁes, for each MFCC bin in
the MFCC of speech segment, thé"r;absrolute diff@reﬁ‘ée of each mixed and unmixed
MFCC bin (m and u) is calculated. As described previously, the similarity metric
should includes a penalty value to further differentiate the correct match from other
shifts so as to withstand distortions. Besides, an error factor which represent the
fault tolerance is included to decrease possible error penalties.

The similarity metric is derived as follows:

|m —ul, if m+e>=u;

B(m,u) = { (5.11)

D, otherwise,

where € is the error factor, and p is a penalty value. For each bin in the MFCC,
B(m,u) is computed. Then B(m,u) is summed up over each MFCC of matching
window as the similarity value of that window. Note that the window size is de-
termined by both the analysis window of MFCC computation and the number of
analysis windows to be used for matching. The complete flow of MFCC-based syn-
chronization algorithm is shown in Figure 30. After the MFCC bins of both IP and
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(a) Time 0 ms (b) Time 32 ms
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Figuré, 31: Eﬁect of codec on MFCC
(AL
PSTN audio are extracted, X, is suT ao@w X,,. For each bin (u and m) after
the subtraction, if m plus the error factor q’@ larg r than u, |m — u| is summed into
the similarity metric. Otherwise,a pt alty value Ilj summed instead.
Note that since the MFCC & acqun" c{ fromran aIll

vector, the analysis windows used for matchmg is referred to as matching columns for

ly81s window is a 13-entry column

simplicity. The author claims that'the synchromzed window should get the smallest
similarity value. Therefore, within the search range, the matched window can easily

be determined by taking minimum of the similarity metrics.

5.3 Performance Evaluation

We implement the algorithm using Matlab based on the MFCC code provided
by [40]. Following the similar flow of discussion in the previous chapter, the evaluation
of performance on distorted audio signals is discussed in this section. The size of the
analysis window is set to 32ms in the evaluation, and the tolerable error is +32ms

which implies a shift of 1 matching column.
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Performance against V oice Codec
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Figure 32: Performance of MFCC against codec distortion

a

5.3.1 Codec Distortion

As discussed in the previgus chappery, different codecs Vinay neglect different time
redundancies and thus result in distinet Waveforps However, since the objective of
redundancy removing is to achieve hig er-ﬂm‘mgp rate while the human perception is
less affected, it should not severely in encé]ﬁhe ob{calned MECC. As shown in Figure
31, as expected, the MFCC blns of s jeches after /#MR and G.729 codec are similar,
except for some small Varlatlon Wth is 1ncludedI by different redundancy removing
criteria. ( -

The performance shown in Figure 32 eonfirms the above inference. The percentage
of accuracy can easily achieve 100% as the number of matching columns is larger than
2 which is 64ms in length. Therefore, we can conclude that the voice codec may not

be an important issue if sufficient matching columns are used.

5.3.2 Misalignment of Analysis Windows

Unlike the search step in cross correlation, the a duration of audio signal is used
to compute the MFCC value as a whole. While the MFCC is obtained, the window-
ing function might not take the same part of the audio segments for IP and PSTN
network. Therefore, the obtained MFCC value might be different.

Figure 33 shows the effect of how misalignment affects the performance of MFCC.
We manually include different delays in the PSTN audio so as to make it shifted

away from the IP audio. We can observe that the performance may drop as the
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Performance of Sync. by MFCC with Delays
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Figure 33: Effect of misaligned analysis window
S ¥ :"
PSTN audio is shifted away. Ho%x;e\}er as the tim@lskitt increases to near 32 ms, the
percentage of accuracy 1ncrease§ agaln,.wI his is because for a, time shift around half of
the analysis window size, the MFCC me’t’ru‘.;s m%ré diffetent than small shifts. When

the time shift is near 32ms that 1mplr t@@"

atcﬂad cql mi moves 0 the next one which

""'“ I

value is"more similar to the next

matching column. Hence the correc

is still correct. ; '
Note that although usmg only onL matchmé column may severely suffer from

the performance drop due to the analysw Wmdow mlsahgnment if more matching

columns are used, for example 5 columms; thespercentage of accuracy can achieve

approximately 100%.

5.3.3 Noise Distortion

Similar to the discussion in cross correlation, we use AWGN noise for evaluation.
Figure 34 shows that the MFCC bins might be distorted by the additional noise.
However, we can observe that the noise mostly affects the lower MFCC bins. This
might because the AWGN noise is spread through the entire spectrum which implies
that the noise energy somewhat equally distributed in the spectrum with few varia-
tion. Therefore, after the DCT stage, the noise energy is kept in low MFCC bins as
the low variation part of vocal tract response.

However, since the higher MFCC bins are not severely affected, if more matching

columns are applied to compensate the effect on low MFCC bins, the performance
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Effect of Noise on MFCC
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Figure 35: Effect of noise on MFCC performance
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Figure 36: Effert of'ﬁ'ﬁ‘felfel ce on MFCC
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should not be too bad. As expecte JFlgure 35 is OWS, that when only 2 matching

columns are applied, the percentage f_accuracy. rapldly drops as the increment of
noise energy. Nevertheless, if more matchmg colunins are applied, for example 16
columns, the MFCC synchronization-algerithm can usually achieve near 100% accu-

racy.

5.3.4 Overlapping Speakers

To verify the effect of overlapping speaker in the PSTN audio on the MFCC bins,
we try different combination of speeches to compare the variation of MFCC bins.
In Figure 36, we combine different gender speaker into the PSTN audio. The result
shows that the MFCC bins of speech combination seems to follow the MFCC of either
speeches in the combination. However, if the comparing IP audio is not the same as
the one that the MFCC of combination follows, then the similarity metric may yield a
large value at 0 shift point. Most of all, which speaker that the MFCC of combination

may follow is difficult to predict in advance.
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Effect of Overlapping Speakers on MFCC
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Figure 37: Performan@e égainéf:'overlapping speeches

Additionally, according to- Equatlon 5.10, there'seems-to be no apparent relation-
ship between the unmixed MFCC and mixed MFQC that can be used to determine
whether the mixed MFCC follows the unwd .Jsp|eech Therefore, it’s hard to filter
out the unmixed MFCC whichismot the Oﬂf thf%t mixed MFCC follows so as to re-
move the cause of high sumlarlty me,r{c "This ma[| sevgrely corrupt the performance

As shown in Figure 37, once tﬁk—;'PST_N audio rco'ﬁ’ti:ains an interference from other

of MFCC synchronization. .
speaker, the percentage of accuracy sud(‘ii"enlyfdrop:s, even though 16 matching columns
(512ms in length which is half the size of search range) are applied. As the increment
of speakers inside the mixture, the MFCC bins are so distorted that it can hardly
differentiate the correct match and other shifts. Therefore, we conclude that MFCC

may not be robust to interferences in the PSTN audio.

5.3.5 Packet Loss

In consideration of the packet loss that might be included in the IP audio, we
apply the same packet loss concealment method as previous chapter which simply
duplicates the previous packet for the lost one. Since the speech is inherently quasi-
periodic, the packet duplication might still preserve this quasi-periodicity. Therefore,
when MFCC tries to characterize the response of vocal tract from the speech, the

resulting MFCC bins may not be largely interfered, as long as the packet loss rate is
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Effect of Packet Losson MFCC
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Figure 38: Performance agamst-packet loss
" = .
not so large that the essential cor;1p0nents of speech""éjfe lost.

Figure 38 reveals the robustness of MFCC agamst packet loss while the lost packet
is concealed by the duplication of thg— prevnously received packet. Although few
matching columns might net have en u@f{)rlﬁa’mon to*differentiate the correct
match from other shifts, 4 matchmg'c Iunﬁ§ mz}yJ be qu1te enough for the common
loss rate of less than 20%. i | :

In consideration of practical sﬂzua 1Ln Figure (%ié shows the performance of MECC
when multiple sources of distortions aceurs.  We can_observe that since MFCC is
vulnerable to overlapping speakers, whenever a speech is mixed, the performance
is degraded. However, for non-overlapped speech, additional sources of distortion

doesn’t degrade the performance. In other words, if MFCC is robust to the sources

of distortions, the combination of distortion doesn’t largely affect the performance.

5.3.6 Short Conclusion on Performance

To sum up the afore-mentioned evaluations, using MFCC bins to find similarity
for synchronization seems to be a good option in that it is robust against many kinds
of source of waveform distortions, as long as sufficiently large matching columns are
applied. However, in the evaluation of performance against overlapping speakers in
the PSTN audio, we observe that the percentage of accuracy is severely corrupted
by the additional speeches. Besides, even though large matching columns are applied

the performance doesn’t show major improvement. This may be a problem since in
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Performance on Multiple Sources of Distortions
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CHAPTER 6

SYNCHRONIZATION BASED ON
SPECTROGRAM

As concluded in the previous chapter, synchronization based on MFCC may suffer
from the performance corruption while PSTN audio is a mixture of conferees. The
reason to the performance corruption is that MFCC bins are easily distorted by other
speech sources, and additionally, it is hard to filter out the distorted matching column
by inferring from the unmixed and mixed MFCC. Therefore, in this chapter, we try
to discover a different representatiomiof speech such that different sources of speaker
can somehow be separated whichis related to thé research field of speaker separation.
By surveying the research in Speaker separation, we discover the advantage of simply
using spectrogram for synchronization. After the analysis«of advantage of spectrogram
in separating different speakers, we propge:é} synchroniiétion algorithm based on

spectrogram. Then similar evaluatiorP df;'pégfoﬁmance on swaveform distortions to

previous chapters is included. \ m 1,

6.1 Spectrogram-Based Synéh_ronization

Although speaker separation is ﬁot a new topic inthe field of digital speech pro-
cessing, the discussion background is so different that this research can hardly be used
in this scenario. In [41-43], their algorithms require all the speeches are supervised
so as to construct masks, bases, or decomposition matrices for further computation.
Since the receiver has no way to know all the individual speeches, these solutions are
not applicable. Even though we can obtain all speeches somehow, the modeling pro-
cesses for masks, bases, and matrices are accurate only when enough audio received.
It implies that at the beginning of conference, the models are not good enough.

In [44] and [45], speech separation can be done without supervised audio. How-
ever, authors of [44] use EM algorithm to estimate multi-pitch model. This cannot
support real-time separation. Although in [45] the authors claim that their algorithm
can achieve real-time processing with high-performance DSP architectures, this DSP
architecture is not available for common mobile handsets. Furthermore, their algo-

rithm assumes there are only two speakers and the volumes are sufficiently different.

59
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Speech and Spectrogram

Freq (kHz)

/s
This may not be the cas_e_-‘aﬁ the.time. < ~
As concluded in the ‘:fa"ré‘i\;ri'o \pter, pravi

is not a suitable solution t_@_ 1}&5 of 17ation sinc

C'G’ C@pSlders only the factors
Y u%ﬂm}tt"mg other information of
speech which might be useful in s],iynch‘raomzatlgﬁ ].msplred by the human auditory
system, research on Computational A{'ud'ft{)iryﬁcéné Analysis (CASA) [46] deals with
verification and segregation of audio segments to imitate how audio is processed in
human auditory system. In the field of CASA and even common speech process-
ing [47], audio signals are usually manipulated in the time-frequency (T-F) domain
which demonstrates the frequency distribution within short time interval. Frequency
distribution may differ in consequence of different speakers or different words. Even
within the same word, different syllables may reveal different frequency distribution.
This implies that from the frequency distribution, audio from different speakers or
different syllables pronounced by the same speaker is distinguishable in T-F domain.
Therefore, we develop an algorithm based on these T-F domain features for synchro-
nization.

An example of spectrogram of speech is illustrated in Figure 40. The speech is

divided into half-overlapping analysis windows. Each analysis window is transformed
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to one spectrum by Fourier transform. Different shapes in time-domain may results
in different distributions in the spectrogram. This implies that the spectrogram can

somewhat represent the time-domain characteristic in the frequency domain.

6.1.1 Sparsity on Spectrogram

To cope with the insufficiency of synchronization algorithm based on either cross
correlation or MFCC for speech mixture, an individual-speaker-identifiable feature
should be used. Joujine et al. [48] and Roweis [49] have noted that a speech signal is
sparsely distributed in a high-resolution T-F representation and ,as a result, different
speech utterances tend not to overlap in individual T-F units. This observation leads
to the property of orthogonality between different speech utterances, which is often
referred to as Window-Disjoint Orthogonality (W-DO). The orthogonality assumption
holds well for mixtures of speech and ether sparsely distributed signals, but is not

valid for speech babble.

6.1.1.1 Concepts of Apprommate W-DO

Perfect W-DO should satlsfy that eaeh frequency bin at a certain window is con-
tributed by single speaker. It can be repre'giaied‘ by Equatien 6.6.
h ‘ L
X XY (r,w 0 ‘-'L, I : n
(rw) x Y(rw) = TR | o

where X (7,w) and ¥(r, w) are the spectrogram of different speakers

Many blind speech separation research endeavors are based on the approximate W-DO
of speech, such as [50-55], while [56] Has analyze"d the effect of approximate W-DO.
This sparsity in spectrogram from different speaker provides a helpful tool to separate
speech mixture and also suggests a better feature than MFCC in synchronization
algorithm design. A more concrete concept of approximate W-DO of speech can be
presented by Figure 41.

The upper two spectrograms in Figure 41 shows the T-F distribution of original
speeches. As expected, the male speech locates most of its energy at low frequency
bins, while the female speech reveals a more spread distribution in spectrogram.
To illustrates the concept of approximate W-DO, the lower spectrogram shows the
square-rooted multiplication of the upper two spectrograms along with the spectrum
for a certain analysis window. In comparison with the original two spectrograms,
the square-rooted multiplication (geometric mean) exhibits a relative low magnitude
distribution at most frequencies. That means if one speech is large at a certain

frequency then the other speech is likely to be small. This implies that these two
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Spectrogram of a Male Speech Spectrogram of a Female Speech
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Figure 41: Spectrogram of a male, a female speech, and their multiplication
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speeches tends not to have high magnitude at the same T-F bin which is exactly the
spirit of approximate W-DO. However, solely from the spectrogram multiplication, it
is hard to tell the degree of the accuracy of W-DO. In the next part, a quantity that
measures the accuracy of W-DO is presented, along with a discussion of the influence

of different parameter settings on W-DO.

6.1.1.2 Measurement of W-DO

Authors in [50] presents a suitable metric for W-DO measurement. Ideally, perfect
W-DO ensures that for each T-F bin in the mixture spectrogram, the energy is solely
contributed by a single speaker. However, approximate W-DO suggests that for
speech signal, it is likely that more than one speech source may contribute to the
same T-F bin while only one or few of them may provide significant large energy.
Hence, a more accurate W-DO can. be interpreted in two fold: If each T-F bin is

assumed to belong to one signiﬁcant speech,

1. the total preserved energy oftthe speech of 1nterest ‘should be approximately
equal to the total orlglnal energy*of ity

2. the remaining energy of other sp ec@sho!uld be as lew as possible.
u
For this reason, two factors are defined: rkl tl'le preseryved-signal ratio (PSR) and
JI ). Before Fhe defimition of PSR and SIR, the

significance criterion is first definedas

Sj(rw) )
oo — { 1, if 20log(==% ) S D

(2) the signal-to-interference ratioi(

i = where z'is the masking threshold. (6.2)
0, otherwise,

Here, x is called masking threshold because ¥ masks out other speeches by a x dB
threshold, and j represents the index of source speech. When the source energy is
larger than the interference energy by x dB in a specific T-F bin, it is considered
significant in this T-F bin.

For a specific significance criterion W7, PSR is defined as

|95 (7, )85 (7, w)||”
H‘%(T w)HQ (63)

where || f(7,w)||? _ZZV T, w)

which suggests that P.S R\p;c = 1 if U] preserves all the original source energy.




6.1. SPECTROGRAM-BASED SYNCHRONIZATION 64

Measurement of W-DO with Different Number of Speakers
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Figure 42: WDO measurement with different number of speakers

To define SIR, the interferencely; is defined.beforehand as

l,—

TS ML (6.4)

k.k#g

g—

which is the time-domain summatlon,,-ef ﬂpeache‘s other than sj. Thus SIR with

significance criterion W7 canrbe defing aﬁr.'— l

' F
i s 4 I
||||\wwym N

Obviously, larger ST Rq,z mdlcates Tess remalmng 1nterference after W7,

S[R\I/:c

(6.5)

Combining PS R\p;c and ST Rq,jx, into one measure of approximate W-DO, metric
WDO\I,;c is defined as

[1W5 (7, )5 (7, )| |* — |95 (7, w)gis (7, w) |
155 (7, w)[[?
SIR\I,;D ’

WDO\I,Z =
(6.6)

= PSR\II;D —

meaning the normalized difference of remaining source energy and interference energy
after W7. For perfect W-DO, WDO\I,;: = 1 which implies that PSR\I/;? = 1 and
S1 Rq,;; — 00 so different sources are completely disjoint. The better approximate
W-DO this speech can achieve, the more closer to 1 WDO\I,;_E is.

Since W-DO relies on the sparsity distribution of different speeches, when the
number of speakers in the speech mixture, it is much more likely that different speakers

may all largely contribute to the same T-F bin, and thus declining the accuracy of
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Measurement of W-DO with Different Masking Threshold
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Figure 43: WDO measurement with different masking thresholds

approximate W-DO. Figure 42 showsthe WD‘@ measure with regards to different
number of speeches in the interfereneéy,. As expected; WDO decreases as y; contains
more and more speakers ‘as ,éf—result Qﬁ_dgclinipg. POl an'c_rll_vSIR. This indicates that
it is more difficult to tell a specific speake;frdﬁ’ others Since they are too disorderly
to tract. Fortunately, in out se¢enario, tlmﬁﬁ'ﬁ‘mb'e{r of interfering speaker is unlikely
to have a large value. For a mixtur coﬂuammg less than five speakers, the W-
DO measure could be larger than 5. “This Ihéans that deducting the effect of
interference, still three-forth of: the 0%1 inal energéf 18, retalned

However, the accuracy of approx1mate W-D@ s not only affected by the number
of speakers in the mixture. Different f)arameter settings at the significance deter-
mination stage and even the STF'T may also induce different W-DO measures. For
significant determination, the masking threshold directly influence on both PSR and
SIR. As shown in Figure 43, larger masking threshold suggests that less T-F bins
would be chosen to be significant, and thus the preserved energy of original source is
less. Therefore PSR is lower. On the other hand, for the chosen T-F bins, the source
signal is much greater than the interference so SIR is accordingly larger. This is a
trade-off to W-DO since going either side does not benefit both. The W-DO measure
in Figure 43 reveals that a moderate masking threshold is required to achieve higher
approximate W-DO.

On the other side, the windowing process may also affect the accuracy of approxi-
mate W-DO as discussed in [57]. Larger window size may increase the frequency res-

olution, however, it may also destroy the W-disjoint orthogonality among speeches.
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Measurement of W-DO with Different Window Sizes
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Figure 44: WDO measurement with different window sizes

On the contrary, small window size may not_contain_enough time information to
represent the quasi-periodicity of speech as shown in the previous chapter. There is
no optimal method of choesing thebest-suited window size, nevertheless, Figure 44
shows that the best window; size/to achieve the-highest WDO is 512 samples (64ms
for 8k sampling rate). This is ¢onsistent ;@.thft 1ol work lin [50]. So, we assume that
an analysis window size of 64ms is the prmm] (%ne for high W-DO.

m 1\

6.1.1.3  Significance in Mizture F ectr%ﬂﬁ , FF
| .

Since we have introduce the (-:_o,n,cle(Lt of W-Dé i’n;‘_specrtrogram, the next question
to consider is how to apply the conicept‘,bf W-DO: to our synchronization algorithm.
The objective is to infer from the unmixed AP audio and the mixed PSTN audio
that which frequencies contains mostly of the unmixed IP audio. Figure 45 shows
the spectrum of two speeches and their combination. When one speech is silence or
almost silence, the spectrum of combination is of course dominated by the voiced
one. However, if two speeches are both voiced, we can observe that the combination
is usually dominated by either one of the speeches as a result of approximate W-DO.
This implies that if we can infer from the unmixed IP audio and the mixed PSTN
audio that which one dominates a certain frequency. Then by comparing only those
frequencies that the unmixed IP audio dominates, the effect of speech mixture on the
synchronization should be lessen.

Concluded from the discussion in this subsection, T-F representation of speech can
lessen the indistinguishableness of speech mixture. Since in our scenario the unmixed

speech can be transmitted through the IP network, exploiting the uncorrupted T-F
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Spectrum of Two Speeches and Their Combination
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Figure 45: Spectrum of mixture is usually dominated by certain speech
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Table 3: List of parameters

Notation | Meaning
a T-F representation of a after STFT

a(t,w) | Specific bin of g.at time 7 and frequency w
Ta(rw) | Magnitude of a(7,w). :
Ga(rw) | Phase angle ofia(r,w)
ADrw Phase difference®f two sources atutime 7 and frequency w

o i . ja
f "l i 1

n Bound of £ Lo Nl ]
" B i
‘I ‘ ﬁ'_P_-'—" l I

qn

| |
14 b
bins for synchronization determination might be ai)le to indrease the performance of

synchronization algorithm formixed Isbeech from !Ithe PSTN network.

6.2 Synchronizatioh A'lgom'.ihm Design

Based on the previous discussions of merits on spectrogram for synchronization,
we proposed an algorithm structure that utilizes the speech spectrogram to learn the

synchronization point in PSTN-audio stream.

6.2.1 Significance Determination

The most important unit in our synchronization algorithm is the significance lo-
cator which is designed to improve the robustness of our algorithm against the effect
of simultaneous speakers. Based on the fact that it is easier to distinguish a specific
source § from the mixture 7 when § is larger than the interference 7, if we can some-
how manage to determine the significance of § in m, then the synchronization would
be simply matching the significant frequency bins with §(7,w) received from the IP

network.
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To clarify the determination of significance merely from (7, w) and §(7,w), fur-
ther discussions are stated in the following paragraphs. Source 5(7,w) = |7's(r.w)| £ Ps(rw)
and interference %(7’, W) = |Titrw)|LPi(rw) are shown in the left coordinate of Figure
46. To simplify the notation, 74 is simply referred to as r, if no further statement,
and so are 7(r.) and ry,(r.). The list of used parameters are shown in Table 6.2.1.

Without loss of generality the coordinate can always be rotated so as to make the
source lie on the horizontal axis. Thus the angel between 3(7,w) and i(7,w) is Ay

which is simply noted as ao¢. Therefore, r,, is derived as

r2 = (ry +ricos(ad))? + (risinag)?

=12+ 2ryricosad + 17 (cosag + sini @) (6.7)
=72 4 2r,7ic05A Q) + 12
It is shown in Equation 6.7 that the magmtude of mixture is dependent not only
on the magnitudes of source and interference ‘but also on the relative phase angle

between them.

Assuming that r; = ars Where 0<a, Equatlon 6. 7 becomes

= 1~ —|— QOAﬁosAq)—l— a’r?

‘ (6.8)
Oﬁiﬂsﬂg &
l ;
If r, dominates r,,, l = : !l
o $ouldaic small,
= T S, W (6.9)
T'm
& =4
TS

From Equation 6.9, we can see that if r, dominates 7,,, - The reverse is not
necessarily be true since ’;—m — 1 is only a sufficient condition of ry dominating 7,,.
However, the sparsity (approximate W-DO) on spectrogram of speech signals suggests
that usually r, and r; are largely different from each other. In other words, when r,
is closer to r,, (% — 1), it is most likely that « is very small < r, dominates.

Using the above relation, we design the similarity metric as the normalized abso-

lute error between 7 and r,, (| ). In general, the value of similarity metric can

Tm —Ts
Ts
be derived as
Te =T ST ST+ 7 = —ars < ry, — s < arg

g T

sa (6.10)

T's
r

m_r5|§a

s

= |
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It can be seen that the similarity metric is bounded by «a. If only those frequency
bins where ry dominates are chosen, the similarity metric may obtain relatively low
values since those bins have small o values.

In order to determine whether r; is significant in a certain frequency bin, = is
first examined. If 7= is less than a certain bound 7 above 1, this bin is chosen for
similarity comparison since the possible a values ranges only from 0 to 1, and thus
are potentially significant. For those frequency bins at the correct synchronization
column, since bins with relatively small r, values to r,, values are filtered out, the
remaining bins are usually dominated by r,. Therefore the similarity metric may
usually obtain small values bounded by «. However, for those frequency bins at other
columns, the comparing r,, values are not composed of ry values, so the similarity
metric will not be bounded and thus may obtain quite large values. Hence the correct
synchronization column can be located by c¢hoesing the one with smallest average
similarity metric value.

Note that possible a values are affected by the bound 7.. While larger n may also
choose less significant bins for_comparison, smaller g values may reduce the number of
chosen frequency bins. However more number pf chosen freéquency bins may lessen the

effect of occasional o values near 1. This E hesﬂtpat the more significant frequency

|
|

= |

bins are chosen, the more accurate t}rl alg?trlthnﬁ can achieve.
6.2.2 Synchronization MvO_\d,_ulek [ e ; |

Based on the afore-mentioned sighiﬁcence determi:fiation, we design a synchroniza-
tion module which utilize the spe¢trogram for synchronization, as shown in Figure
47.

When the synchronization is triggered, a segment of speech from the IP audio
buffer is chosen and sent to the FFT processor. The size of the speech segment
depends on the specified matching window size. Similar to the notation in MFCC,
the number of analysis windows inside a matching window is simply referred as the
matching columns since the spectrogram is like a set of column vectors while each
column contains the frequency distribution of certain analysis window. Meanwhile,
within the search range, the PSTN audio is sent to the FFT processor for later use
in synchronization.

Inside the synchronization module, both the spectrograms from IP audio and
PSTN audio of the size of matching window are first sent to the silence filter which
determines whether this matching column is silence. This silence filter is required

since if the IP spectrogram is silence, then using this column for synchronization
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Figure 47: Synchronization framework using proposed algorithm
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determination is easily affected by noises. On the other hand, because only none
silence parts of IP audio are chosen for comparison, removing the silence parts in
PSTN audio can reduce the computation for comparing these silence parts.

After the silence filter stage, the significance locator infer from these two spectro-
grams to determine which frequencies are possibly dominated by the IP audio. The
significance locator is designed as previously stated. Then this potential dominating
frequency information is sent to the similarity metric, together with the IP and PSTN
matching columns. The similarity metric stage computes the mean absolute difference
of these two matching columns at only the frequencies depicted by the significance
locator.

The same process is iteratively performed for each matching windows within the
search range. Each iteration records the acquired similarity metric for its matching
window. After the iterations, the matehed window is determined by the matching

window with the minimum similarity metric.

6.3 Performance Bvaluation

In this section, the synchronization*-a:]gopih’ph‘ | is implemented using Matlab to

evaluate the effectiveness antd robustn k S 'gﬁ?—%&géin, the evaluation on performance
‘ |

focuses on the discussion of different IJi ds oﬂd_isto;rt;ions on-spectrogram. Note that in

the following evaluation, the analysis 'ndd;?x;-ilse(il n‘p FFT is 64ms with 32ms overlap.

Therefore, the acquired spect'fu'm (;é)lhmns are 32ms away from their neighboring

columns

6.3.1 Codec Distortion

Since the spectrogram faithful represents the frequency distribution of the speech
signal, when the speech signal is modified, the spectrogram is consequently modi-
fied, too. Therefore, the resulting spectrograms for different voice codecs might be
different. Figure 48 shows the difference between the spectrums after different voice
codecs for a certain analysis window. It is observed that at some frequencies the
AMR and G.729 codec may result in different values. Since the differences may not
be large enough to be eliminated by the significance locator, they are all included in
the similarity metric and thus might induce error judgments.

Fortunately, the error induced by the voice codec can be lessen by sufficiently
large matching columns, for example 6 columns which is 192ms in length, as shown in

Figure 49. Therefore, the spectrogram-based synchronization algorithm can overcome
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Square Error with Different Time Delays
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the distortion introduced by voice€odecs.

g
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6.3.2 Misalignment of Analysis| angwsl FI
by
-
In order to measure the effect of a¥ lysisw ind!) misalignment, we define a simple

normalized square error metric, calleE E .awlhiich ',i defined as
ko) il AL

Al (6.11)
where A is the time shift.

s Lt

SE actually represents the normalized error energy among neighboring columns. The
more the neighboring columns differ from the column of interest, the larger SE value
is obtained. Figure 50 shows the SE between the spectrogram with time shifted
analysis windows and the unshifted columns. As the time shifts away from 0, the
SE comparing to the 0-shifted column starts to grow while the SE comparing to the
1-shifted column starts to decrease. These two SE lines cross at the time shift of
around 16 ms. Since each column is 32ms away from its neighbor, we can observe
that the SE value comparing to the 1-shifted column has its minimum at the time
shift of around 32ms.

This observation implies that when the time shift is near 0 or the integer multiple of
32ms, the determined matched column is highly probable to be chosen as the nearest

column. However, when the time shift is around 16ms, the spectrogram becomes so
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Performance of Spectrogram Synchronization against Misaligned Window
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Figure 51: Performance-of.spectrogtam for-misaligned windows

obscure that error judgmen‘t'.si‘ may oﬁﬂﬁi Tlrlfé_;f}Frformé,ﬁée shown in Figure 51 is

consistent with the inference from Fig g‘:gﬁ.’i&lﬂhpugh few matching columns might

not obtain satisfying percentage ef a¢curac "vvhei themmumber of matching columns

increase to over 6 columns (which is I] 2mssin: tin% . , the dehievable accuracy is more
I ‘ :

than 90%. gt l' ‘

6.3.3 Noise Distortion

Again, the AWGN noise is applied on the speech to observe the influence of noise
on spectrogram. Since the AWGN noise is ideally equally distributed throughout
the spectrum, the effect on each frequency component may be small. As long as the
energy of the clean speech is large, the influence of noise is negligible, as shown in
Figure 52. Since the original speech energy level is high in this analysis window, the
influence of noise is relatively small. However, this is not always the case since a
common speech signal inherently contains both high energy parts and lower energy
parts. Therefore, the performance might still be affected.

Figure 53 shows the performance against different noise levels. When the noise
energy level increases, the percentage of accuracy fluctuates with slight tendency
to decrease. Comparing to the performance acquired from MFCC algorithm, the
spectrogram is less sensitive to the additional noise. The reason is because the noise

energy is distributed on the entire spectrum, therefore the effect on each frequency
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Effect of Overlapping Speakers on Spectrogram Sync. Performance
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Figure 54: Performance of spect:rogram_against overlapping speaker
h =
component is less. On the other hand the process of computlng MFCC bins may
collect the distributed energy and thm\,ﬁcast J135‘1:0 the low MFCC bins, hence the

performance is easier to be corrupted' A -- 5 |
5 |
6.3.4 Overlapping Speakers m | l

I
Since the motivation of thig-spect ogram—basF#l synéhronization algorithm is to

compensate the insufficiency of MECC=basedsynehionization against overlapping
speaker, this algorithm should outpérfofms the M‘FCC—based algorithm. The effect of
additional speakers on the spectrogram is discussed in the early parts of this chapter,
so we directly put the performance here, as shown in Figure 54.

From Figure 54 we can observe that the percentage of accuracy still drops as the
number of interfering speakers increases. This is because more speakers in the mixture
may corrupt the sparsity between different speeches, thus affecting the performance.
Therefore, too many speakers may exceed the capability of this spectrogram-based
algorithm. However, comparing to the performance of MFCC-based algorithm, this
spectrogram-based algorithm can usually achieves better accuracy when there are
overlapping speakers in the PSTN audio. Additionally, if we only consider less than
two interfering speakers, this spectrogram-based algorithm can achieve more than

90% accuracy if 8 or more matching columns are applied.
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Effect of Packet Loss on Spectrogram Sync. Performance
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Figure 55: Performance of epeetreg‘ram against packet loss

6.3.5 Packet Loss

Since the packet loss may result in .dbffeneﬂt ﬂeech Waveforms it also introduces
variation to frequency components i the:ﬁéctqum Therefore, the resulting spec-
trum might be different from_the original cme Ad%iltlonallyl,’ the adopted packet loss
concealment method simply duphcat sithe prevroI received packet, regardless of the
phase of the waveform. It may resu t{m a dlSCOKtlIlU.OHS joint at duplicated packet
and thus introduce high frequency components to the spectrogram.

The performance of spectrogram on the packet lost IP audio is shown in Figure 55.
The achievable accuracy for a certain loss rate and matching columns is lower than
that of MFCC-based algorithm. Besides, even a large number of matching columns is
applied, for example 16 columns which is 512ms in time, the performance still can’t
ensure 100% accuracy for high loss rates. However, a loss rate as high as 50 or 60% is
impractical since the concealed audio may be unacceptable for human perception. If
we only consider a loss rate less than 20%, 6 matching columns can still ensure 100%
accuracy.

In consideration of practical situation, Figure 62 shows the performance of cross
correlation when multiple sources of distortions occurs. Since the spectrogram-based
algorithm is more vulnerable to packet losses, the performance of distortions including
packet loss is worse than the non-packet-lost one. However, the performance is always

improved as the number of matching columns increased.
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Performance on Multiple Sources of Distortion
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6.3.6 Short Conclusion on Performance 5 o
g ,f"r '-I i ¥
In conclusion, directly using specﬂr?dm fdr F

mparing the similarity among the
matching windows might be affeeted istortions since the spectrogram is

transformed directly from the-wavefo Tlmkefode" since the packet loss concealment

algorithm may include addltlonal hi frequency istortions to the spectrogram due
to the discontinuity of Waveform the spectrogram is, affected by packet loss. However,
for an AWGN noise, since the noise energy, is | Spread through the entire spectrum,
the influence on each frequency component is léss, comparing to that of the MFCC
bins. On the other hand, for overlapping speakers, this algorithm can usually achieve
acceptable performance as long as the sparsity holds which implies that the num-
ber of overlapping speakers should be small. Figure 62 reveals the robustness of
this spectrogram-based synchronization algorithm, as long as a large enough match-
ing window is applied. Even when multiple sources of distortions are added to the

speeches, this algorithm can achieve excellent accuracy.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we investigate on the audio/video synchronization challenges for a
heterogeneous teleconferencing scenario. Due to the heterogeneity in teleconferencing
devices, video conference might only be able to be hold among some of the conferees
in the audio conference. Therefore the audio stream and video stream may traverse
through different kinds of networks to the receiver. Since the timing relationship may
be corrupted by the conference server, synchronization algorithms should be applied

to somehow recover this timing information.

7.1 Performance Compariéon :

We have proposed an audio synchrgnization_framewor_k in chapter 3 to address
this synchronization problem in the hete_fggeneou“s teleconferencing scenario. Based

on the framework, we have propesed thyeei@ei.enht types of synchronization algorithm

and evaluated on the performance of LeTch eﬁnchrenization algorithm against possible

sources of waveform distortion. { |
|

7.1.1 Codec Distortion

Figure 57 shows the performance of the-aferéfmentioned three synchronization
algorithms against the codec distortion. It can be observed that the cross-correlation-
based synchronization algorithm is highly robust to the voice codec since the general
waveform trend is not severely distorted by the voice codec. On the other hand, for
the spectrogram-based algorithm, it requires a 256ms matching window to achieve
100% accuracy due to the direct distortion on spectrogram by codecs. As for the
MFCC-based algorithm, since the MFCC has extracted the important vocal tract

responses as features, it should not be severely affected by the codec.

7.1.2 Noise Distortion

When it comes to noisy speeches which is usually the case in practical environment,
as shown in Figure 58, the MFCC-based algorithm seems to be vulnerable to noises.

In order to ensure high accuracy, the matching window should be larger than 256ms.

80
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Performance Comparison for Codec Distortion
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Performance Comparison for Overlapping Speakers
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Figure 59: Performancecomparison for overlapping speakers
i, - ‘: . I'. ;' : o,
However, the spectrogram-basedalgosithm, in compairison to the codec distortion,

doesn’t seem to be affected by thistadditional noise: This-is because the introduced

AWGN noise is spread all over the spectfum .'theyefore the effect on each frequency

Far i
component is small. - ine. | |
As to the cross correlation algorlt*i oug he performance is able to achieve

more than 85% accuracy evén for al?) ms. ~w1nd0 | enlargﬁ'ﬁg the matching window
doesn’t do much good on the,;-aperfo‘r{lance. Thi's is be{:é,use this algorithm utilize
only the time information. When‘tlie matching n_wina-'([)w is enlarged, more noises are

included, too.

7.1.3 Overlapping Speakers

Since the spectrogram-based algorithm is designed so as to overcome the effect of
overlapping speakers, it can outperform other algorithms for most cases, as shown in
Figure 59. Note that the notation “2” speakers includes the speaker of interest, as
well as “4” speakers. The performance of spectrogram-based algorithm can achieve
larger than 90% accuracy even for 4 speakers if a 256ms window is applied.

On the other hand, while the cross-correlation-based algorithm steadily improves
its performance to an acceptable level by applying a larger window, the MFCC-based
algorithm is so corrupted that the accuracy is usually less than 75%. Especially when

more interfering speakers are included in the PSTN audio, the performance is terrible.
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Performance Comparison for Packet Loss
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Figure 60: Performance comparison for packet loss

7.1.4 Packet Loss 3 o

B

If the IP audio suffers from paci<et loss, the Spectrdgfém—based algorithm is severely
affected since the loss-coneealéd audlo has modlfy the Waveform and consequently the
spectrogram, as shown in Figure 60. Hoy_sgevgr \for the lother two algorithms, since
the packet-loss concealment*algorithm dqem-c#einge much on the waveform trend
or the speech feature, they seem to de tolefﬁpt t9 }hls kind-of distortion.

Nevertheless, if at the same Hime/ the PSTN ;audlo includes other overlapping
speakers, the performance of dlﬁ“ere Ialgomthms! S shown in Figure 61. It can be
observed that the cross- correlatlon—based algorithm now.seems to be seriously affected
by these two sources of waveform distortion. Thishas shown the vulnerability of using
only time domain information which is easily distorted for synchronization.

Now, if we combine all the above sources of distortions, the performance of each al-
gorithm is shown in Figure 62. We can observe that the spectrogram-based algorithm
outperforms the other two. Synchronization algorithm based on cross correlation is
limited in its performance by multiple sources of distortions as previously stated. As
for the MFCC-based algorithm, since it is vulnerable to overlapping speakers, the
performance is the worst among these three. However, we know that whenever there
is no overlapping speakers, performance of MFCC is better than that of spectrogram.
Generally speaking, although sources of distortion may affect on the performance for
all kinds of synchronization algorithms, larger matching window usually seems to be a
favorable solution to increase the accuracy of synchronization. However, larger match-

ing window suggests more samples to be compared in each iteration. The increased
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Table 4: Required computation time of different algorithms

Matching Window Size (ms) ‘ 32 64 128 256 512
Cross Correlation 4.4s 5.9s 9.5s 15.6s 31.0s
MFCC 14.7ms 16.2ms 17.8ms 34.3ms 40.9ms
Relative to XCOR 0.334% 0.275% 0.187% 0.220% 0.132%
Spectrogram 19ms  22.8ms 36.7ms 68.4ms 116.5ms
Relative to XCOR 0.432% 0.386% 0.386% 0.438% 0.376%

Table 5: Required computation time of stages in MFCC and spectrogram

Matching Window Size (ms) | 32 64 128 256 512
MFCC Conversion 14.6ms 16.0ms 17.6ms 27.8ms 34.1ms
MFCC Comparison 0.lmsys50.dms 0.2ms  6.5ms  6.8ms

Percentage of Conversion . °99.3%  98.8% = 98.9% 81.0% 83.4%
Spectrogram Conversion 13.9ms 134dms _16.6ms 27.6ms 36.2ms
Spectrogram Comparison [ 52ms  9.4ms~.-20.1ms 40.7ms 80.4ms
Percentage of Conversion 73.2%  58.8% w.55.2% . 40.4% 31.1%

““‘ <
=
computation time for the synchroan tloﬁiar'n—daul? might affeet the reactiveness to

1] |

- T

network dynamics.
erutatlon tlme of dlfferent synchronization algo-

Table 4 has listed the requ1red €o
rithms when matching windew of dlfferent sizes is apphed The required computation
times for MFCC and spectrogram baséd algorithms are different from that of cross
correlation by the order of two because eross correlation spends too much time on full
search. Table 5 has revealed that for MFCC-based algorithm, the computation spends
most of the time on MFCC conversion. On the other hand, for the spectrogram-based
algorithm, the percentage of computation for comparison increases with the matching
window size.

The above discussion suggests the trade-off between accuracy and computation
time. Figure 63 shows the relationship of computation time and the achieved accuracy
in the situation of Figure 61. It can be observed that higher accuracy could be
traded from longer computation time. However, for the MFCC and Spectrogram
based algorithms, the required computation time is only a few milliseconds, while
the computation time for cross-correlation-based algorithm is larger by three orders.
Although cross-correlation seems to be robust for most cases, the long computation

time may destroy the reactiveness to network dynamics.



7.1.

PERFORMANCE COMPARISON 86

Accuracy (%)

100

(a) Cross Correlation (b) MFCC

Accuracy (%)

4.4 5.9 9.5 15.6 31 08 1 14 15 23
Computation Time (sec) | = (c)"Spettrogram Computation Time (Ms)
100 — \ \

801

601

40t

Accuracy: (%)

9 134 18.6 23.7
Computation Time (ms)

27.9

Figure 63: Achievable accuracy for certain computation time
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7.2 Conclustons

The evaluation results shows that the time-domain cross correlation reveals an
appealing performance for its robustness against single low level distortions. However,
when the distortion level increases or multiple sources of distortions are included, the
performance is degraded and limited even when larger matching windows are applied.
On the other hand, the other two types of synchronization algorithms which are based
on the features extracted by the DSP techniques have their own robustness to certain
kinds of distortions.

However, these DSP features still have their limitations. The MFCC-based al-
gorithm reveals its robustness against different voice codecs and packet loss, while
the spectrogram-based algorithm shows more robustness to noise and overlapping
speakers. This complementary relation of MFCC-based and spectrogram-based al-
gorithm might suggest a future direction of optimizing the performance by utilizing
both features. £} 5 7

Additionally, since the targeﬁ sgenario may fiyolye multiple users in the video
conference, this synchronization algorlthm should be apphed to all these video con-
ference users one by one. For the latter users uo be Synchronlzed the interferences of
the former users to the PSEN audio can- Wtfécted in advance to achieve higher
performance. | ;'] 1 | L

In conclusion, to address'the proﬁo ed synchromzatlon problem using DSP tech-
niques may be an appealing solutlon in termsiof sy’nchronlzatlon efficiency and robust-
ness. As long as the timing 1nformatlor; can be @ccurately acquired by the synchro-
nization module, the PSTN audio can be synchroenized with the IP video, according
to this information. Since our work mainly focuses on the synchronization frame-
work and the preliminary analysis of synchronization algorithms based on features
extracted by DSP techniques, practical implementation and algorithm optimization

could be possible future directions.
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