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摘要 

 

 隨著通訊技術的蓬勃發展，參與語音會議的通話平台逐漸包含許多日新月異

的通信裝置，諸如：傳統家用電話、行動電話、雙模手機或是透過閘道器轉接的

網路電話。為了擁有更好的會議經驗，在此異質語音會議中，有能力使用視訊裝

置的參與者，可能會在語音會議之上同時建立一個包含部份與會者的視訊會議，

此時經由 PSTN 網路傳送的語音與經由 IP 網路傳送的影像之間便有了不同步的

問題。傳統的同步演算法，由於多是針對單一網路下的語音與影像同步，因此不

適合用在此種應用下。 

 在本篇論文中，我們提出了一個使用端的語音與影像同步架構，並將問題等

化為 PSTN 語音與 IP 語音之間的同步。首先，我們採用基於互相關係數的時域

演算法，並發現此方法對於受到噪音或混音等干擾而失真的語音，有其效能上的

限制，所以我們尋求透過數位語音處理技術，將語音訊號中不容易受到干擾的特

徵取出，作為同步演算法的設計基礎。我們將語音辨識中常用的 MFCC 特徵加

入同步演算法中，發現 MFCC 在處理受到壓縮與封包遺失的失真語音時，皆能

達到不錯的效能；然而由於 MFCC 先天上的限制，並不能有效使用在混入多個

與會者的語音同步中。有鑑於此，我們利用不同語者的語音在頻譜上會分散開來

的特性，設計了基於語音頻譜的同步演算法，並發現此演算法較能抵抗雜訊以及

其他語音的干擾。從效能評估的結果中，我們發現使用數位語音處理技術來解決

PSTN 語音以及 IP 影像之間的同步問題，能有較低的運算複雜度，並較能對抗語

音的失真而得到不錯的同步效能。 



ABSTRACT

As the popularity of multi-functional telephony devices grows, traditional audio

conference now may involve heterogeneous teleconferencing devices, including POTS

phone, dual-mode smart phones, pocket PCs, and so on. Among these conferencing

devices, some may have the capability of accessing IP networks and supporting video

conferencing with peer devices in the audio conference so as to have better conferenc-

ing experience. In this scenario, it becomes necessary to synchronize between audio

streams, traversed the PSTN network, and video streams, traversed the IP network.

While related work has investigated the problem of audio/video synchronization, their

scenario is limited to the synchronization within homogeneous network, hence they

cannot be applied in the target scenario.

Therefore, in this thesis we propose an end-to-end framework for audio/video syn-

chronization. We then simplify the problem as one that requires only synchronization

between PSTN and IP audio streams. We first employ a time-domain algorithm based

on cross correlation and identify its ineffectiveness in synchronizing distorted audio

streams, due to noises or packet losses. Hence, we seek to extract distortion-tolerant

audio features by Digital Speech Processing techniques for synchronization. We ap-

ply MFCC in the synchronization algorithm and obtain respectable performance for

audio streams distorted by codec and packet losses. However, MFCC is inherently

vulnerable to overlapping speakers. Therefore, we leverage the sparsity of speeches in

spectrograms to design the spectrogram-based synchronization algorithm, and achieve

favorable performance for speech mixtures and noisy speech. Evaluation results show

that using DSP techniques is helpful in solving the synchronization problem across

PSTN audio streams and IP video streams in terms of accuracy and robustness.
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CHAPTER 1

INTRODUCTION

Ever since the invention of the first radio wave communication device decades

ago, telecommunication techniques have developed from simple telegram to telephony

service which transmits the actual voice from remote speaker. People all over the

world are easily connected by widely-distributed telephone lines. This has led to the

prosperity of telecommunication industry. Many convenient and appealing services

are promoted by the telecom companies to attract users. One of the most interesting

services is the multi-party talk service for audio conferencing. With the capability of

conferencing over telephony systems, distant conferees have no need to commute from

afar to the same conference site, and thus enhancing the efficiency of communication.

On the other hand, as the modern communication technology evolves, telephony

service is available on various types of platforms to make communication almost ubiq-

uitous. Beside of traditional POTS phones, 2G/3G mobile phones, satellite phones,

dual-mode smart phones, and even IP phones with voice gateway have already come

into the market. Therefore, when an audio conference is held, conferees may attend

the conference through various kinds of telephony devices, as illustrated in Figure

1. This heterogeneity of teleconferencing devices suggest heterogeneous capabilities.

For example, 3G Smart phones, pocket PCs, and IP phone with voice gateway are

capable of both IP network access and PSTN network access while others are not.

This extra capability of dual-network access has inspired an interesting research area

as discussed in [1] which suggests that traditional telephony service can benefit from

the capability of IP network access. This is an important inspiration to this thesis

which is explained later.

On the other hand, the defect of conferencing through telephony system in com-

parison to face-to-face conference is that people cannot see the real-time image of

others which sometimes may be helpful while discussion. This defect seems to be in-

evitable for devices without video capturing and transmission capability, however, for

devices with video function, the conference experience could be improved if real-time

image is available. This has led to the motivation of holding video conference only

among the capable devices atop audio conference. Note that usually video conference

1



2

2G Service Controller 3G Service Controller

Gateway

GSM
Base Sation

3G
Base Station

GSM 
Phone

POTS
POTS 
Phone

Dual-Mode
Smart Phone

GSM
Base Station

Dual-Mode
Pocket PC

Laptop
With

IP Soft Phone

Figure 1: Conferencing over heterogeneous network

contains both real-time image and audio, however, since the audio conference is al-

ready in charge of the audio transmission, audio stream in the video conference part

should be silenced to avoid echo.

Nevertheless, video conference service is not yet provided by most telecom compa-

nies. The well-known available video conference services are mostly provided through

the IP network. Many research efforts are made in this area to provide better video

conference structure such as [2–4]. Although some 3G telecom service provider, for

example [5], claims that video calls are available through 3G system, video call service

is still restricted to one-to-one calls. Multi-talk service is only available for audio. The

video conference service provided for enterprise only provides a solution for 3G user

to connect to enterprise video conference server through internet, and thus limiting

the application to enterprise users only.

Therefore, holding the video conference atop audio conference through the IP net-

work where video conference is easily and already supported seems to be the most

appealing solution. When an audio conference is held, the conferees that are equipped

with video transmission and display functions can decide to hold a video conference
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involving only the capable conferees. An important feature of this conferencing sce-

nario is that the audio conference is held through PSTN network 1 while the video

conference is held through the IP network.

Since video and audio conferences are held over different networks, heterogeneity

in network environment may lead to different delays, jitters, and so forth. However,

this distributed conference structure makes it inherently impossible to control and

re-synchronize audio and video before reception since there is no central coordinator

in the topology. Hence at the receiver side, video and audio are very likely to be asyn-

chronous, and thus results in a perceptually unpleasant conference experience. The

conventional research on audio/video synchronization might not be suitable here since

they mostly consider only audio and video streams over the same network, whereas

now the audio streams and video streams follow completely different protocols. It’s

hard for them to communicate and negotiate the time information with each other

using protocol design.

Traditional audio/video synchronization research focuses on the conferencing in

homogeneous network, therefore the timing information is not an issue. However, in

the proposed scenario, since the timing information is corrupted due to the heteroge-

neous network, an algorithm which can re-establish this information according to the

audio and video streams should be considered. Related work on lip synchronization

provides a possible direction. Nevertheless, the time-consuming video processing and

the vulnerability to interferences properties of lip synchronization imply the unsuit-

ableness of this direction. Therefore, a different synchronization algorithm needs to

be considered.

Thereby, we propose an end-to-end synchronization framework which requires

no infrastructure supports to solve this problem. By taking advantage of the IP

network, we simplify the problem to the synchronization between PSTN and IP audio

streams. When the synchronization between these two streams is achieved, the timing

information between PSTN audio and IP video can be easily derived.

To address this audio synchronization problem, we first propose a time-domain

cross-correlation algorithm and depict the insufficiency of this time-domain algorithm.

Hence, inspired by the research in Digital Speech Processing (DSP) [6], another

MFCC-based algorithm is proposed. However, after the evaluation on the robustness

of this algorithm, we point out the defects of this MFCC-based algorithm. Another

spectrogram-based algorithm is thus proposed to address those defects.

1In the following text, PSTN is referred to as the general term for all traditional telephony
networks, including POTS, GSM, UMTS, and so on.
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The chapters in this thesis is organized as following. In the following chapters,

the detailed background of the research scenario is first stated. Some related papers

are reviewed and discussed in the following part. Previous works mostly provide

solutions relying on the common time stamps stamped on both video and audio

streams. The synchronization design considers how to design a protocol to control

media flow so as to avoid playback buffer underflow or overflow. However, since in the

proposed scenario, video conference and audio conference are held on heterogeneous

networks, difference in network protocol makes these two streams difficult to negotiate

the timing relationship through common time stamps. Therefore, recovering the

timing information through the transmitted content is the main focus. Several related

papers on synchronizing human speech which directly use video and audio contents

for synchronization are reviewed. Nevertheless, several essential drawbacks implies

the unsuitableness of this direction.

Next, in Chapter 3 we propose an end-to-end synchronization framework and sim-

plify the problem into audio synchronization, which directly compare the transmitted

audio streams from both networks. Preliminary measurement on the asynchrony be-

tween audio from PSTN network and video from IP network is conducted. Although

the result only shows the delay difference of a simple environment, the well-known

time-varying network characteristic of IP network suggests that the received audio

and video streams may be asynchronous. Under this framework, the challenges of

audio synchronization is discussed in the following part.

In Chapter 4, time-domain-based synchronization algorithm which uses time do-

main cross correlation on two audio streams is examined. Evaluation of performance

shows the insufficiency of using only time domain characteristics of audio in that the

timing structure may be easily corrupted by interferences and other distortions on

audio. Although the performance can be improved by including more samples in the

cross correlation, the resulting computation time may be so large that the synchro-

nization algorithm may not be reactive to the network dynamics. Hence, exploiting

other representations of speech through Digital Speech Processing (DSP) techniques

that better characterize the speech of interest is considered.

Inspired by the speech recognition research area, a widely-used DSP feature called

Mel-Frequency Ceptral Coefficient (MFCC) is first examined in Chapter 5. We found

a patent for a similar application which proposes a simple synchronization algorithm
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based on MFCC. Since that solution focuses more on the design of synchroniza-

tion framework rather than the synchronization algorithm for locating synchroniza-

tion point, the effectiveness of using MFCC for synchronization against the afore-

mentioned challenges is analyzed. The analysis reveals that MFCC might be fragile

to interference of other speakers included in the PSTN network.

Therefore, in Chapter 6, we adopt another DSP feature, the spectrogram, of

speech which is better tolerable to interferences and noises, as suggested by many

blind speech separation research. The advantage of using spectrogram for the design

of synchronization algorithm is described and evaluated. Then an algorithm based

on the merits of time-frequency representation is proposed, followed by performance

analysis in terms of the robustness to interference and other sources of waveform

distortion.

From the performance evaluation, we conclude that the MFCC-based synchro-

nization algorithm is more robust to codec distortion and packet loss while the

spectrogram-based algorithm is more robust to AWGN noise and overlapping speak-

ers. The measurement of computation time required for both MFCC-based and

spectrogram-based algorithms is only of the order of a few milliseconds. Therefore,

these algorithms can be better reactive to network dynamics.



CHAPTER 2

BACKGROUND

Before we step into the discussion of the synchronization algorithm in the proposed

scenario, more insights into the heterogeneous teleconferencing structure is given in

advance to better motivate the synchronization issue. Several related papers are

reviewed in the field of audio/video synchronization.

2.1 Heterogeneous Teleconferencing Scenario

The heterogeneous teleconferencing scenario is illustrated in Figure 2. As shown

in Figure 2, five conferees are attending the PSTN audio conference while only three

of them, which are the dual-mode pocket PC, dual-mode smart phone, and the laptop

with IP soft phone,are the participants of the IP video conference.

While the audio conference is usually controlled and maintained by the audio con-

ference server belonging to a telecom company, the video conference is not restricted

to this centralized structure. The IP video conference can be held by either central-

ized or distributed structures. In the following part, we intend to give an overview of

how these conferencing structures work so as to acquire more in depth understanding

of the heterogeneous teleconferencing structure.

2.1.1 Audio Conference Architecture

Audio teleconferencing services involve the use of computer-controlled electronic

equipment known as an audio teleconference bridge (bridge). A bridge is similar to

a telephone exchange PBX switch in that many telephone lines may be connected

to it to accommodate either incoming or outgoing calls. Unlike a PBX connection,

a conference may be established through the bridge. The bridge permits simulta-

neous speaking by all participants, eliminates clipping, filters out the echo of each

participant’s own speech, equalizes sound volume and clarity, and permits both dial-

out and dial-in connections so that participants may join the conference either by a

call from the teleconference operator or by dialing a prearranged number. For each

conferencing end, the received voice is the mixture of all the other conferees’ voice.

The network where a conference bridge lies usually determines the type of this

6



2.1. HETEROGENEOUS TELECONFERENCING SCENARIO 7

2G Service 
Controller

3G Service 
Controller

VoIP
Gateway

GSM
Base Sation

3G
Base Station

GSM 
Phone

POTS
POTS 
Phone

Dual-Mode
Smart Phone

GSM
Base Station

Dual-Mode
Pocket PC

Laptop
With

IP Soft Phone

Audio Conf. Server

Video Conf. Server

Figure 2: Audio and video conference held over heterogeneous network

conference bridge which could be a PSTN bridge, an IP bridge, or even a hybrid

bridge. For example, [7] has announced a three protocol audio conferencing bridge

which can support traditional telephones, internet connected phones, and SIP devices

in the same conference call. Therefore, the audio conference server could locate at

both PSTN and IP networks. However, these sophisticated conferencing bridges are

usually aimed at enterprise clients. For general public telephone users, usually the

only available audio conference server might be the one provided by the traditional

telephone service company.

However, in the traditional conferencing architectures, Conference Service Providers

(CSPs) use circuit-based TDM audio conference bridge equipment to integrate con-

ferencing application logic, TDM interfaces, and audio mixing circuitry into a single

piece of proprietary networking equipment. Therefore, the end users are unable to

interfere the audio process that are manipulated by the telecom company. When the

audio arrives at the bridge, the processing time of bridge adds additional delay to

this audio stream, and then is sent to the receiver. Since the bridge processing time

are usually the same and the PSTN network is relatively stable, the end-to-end delay

doesn’t varies a lot.
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Note that in the PSTN audio conference architecture, the audio bridge bridge lo-

cates at the CSPs which is out of reach of general public. Any attempts to participate

in the intermediate audio process is unlikely to be available.

2.1.2 Video Conference Architecture

On the other hand, for the video conference, most conferencing applications utilize

the open structure of IP network which makes the conferencing architecture more

flexible than the PSTN network. In [8], the authors collect and conclude the recent

experiments and reassessment of practical implemented video conference systems.

These systems can be roughly categorized into two categories which are the centralized

and the distributed categories.

2.1.2.1 Centralized Structure

In a centralized video conferencing structure, usually a central coordinator called

the Multipoint Control Unit (MCU) which is in charge of the video process is required.

All the video streams from different conferees converge on this MCU. Then the MCU

may first decompress all the received video streams. For each specific conferee to

whom all the other video streams are destine, the MCU may re-compress the required

video streams depending on his bandwidth, display resolution, and other capabilities.

The authors in [9] provide an experimental analysis to support video adaptation

over an extremely large range of display requirements. This decompress and re-

compress process are usually managed by a transcoder. In other words, the MCU

may decompress all the video streams and then compress the required video streams

for each specific conferee according to their capabilities.

The MCU usually has larger bandwidth than a regular participant so it can re-

ceives all participants’ video signals and disseminates them after properly processed.

Since all the video streams gather at the MCU, the synchronization of audio and video

signals among conferees can be done by the MCU. The computation load is mostly

on the MCU, so the end system can be relaxed from considering the computation ca-

pability. In order to make everyone in the video conference can see everyone else, the

MCU usually merges all the received video streams into one single video stream where

every participant occupies a certain location in the output video frame. The video

combination problem is another research issue in the field of video conferencing, as

in [10,11]. For the audio streams, a mixing process as performed in the audio bridge

is applied. The timing relationship between the combined video and audio stream is
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updated while combination. These audio and video mixtures are recovered by this

updated timing information at the receivers to achieve synchronized playback.

However, the centralized schemes have their inherent defects. (1) Although the

MCU has larger bandwidth than regular participants, but still its bandwidth is lim-

ited. Besides, since the MCU is in charge of the transcoding process for all the con-

ferees, the complexity may increase rapidly as the number of participants increases.

From this point of view, the scalability of the MCU is bad. (2) Since each conferee

has to transmit to the MCU even though they might be near each other, it requires

long round-trip delays for resource allocation and cannot react to fast changing con-

ditions in both communication channel and video content. (3) The high cost and

management complexities make MCUs suitable only for larger business applications.

(4) When the MCU is down, no conference can be hold.

2.1.2.2 Distributed Structure

While a centralized structure is usually adopted for enterprises which have more

privacy and security concerns, it is not available for most general public. Therefore,

for general video conferencing service, a distributed conferencing structure is usually

applied. Instead of centralized control, system designers can realize conferencing

systems with a distributed fashion by utilizing receiver-driven layered multicasting

algorithms and/or multihop forward error coding (FEC) transcoding to respond to

time varying and heterogeneous channel conditions.

Since multiple streams are exchanged among multiple users, these streams may

share the same transmission path. A dynamic resource allocation for each stream with

awareness of other coexisting streams in the same path is more efficient than a static

allocation. In [12], the authors explore the multi-stream diversity to provide better

video quality and study how to perform cross-layer multi-stream error protection in

a distributed manner.

The most critical problem for a distributed architecture is the limited bandwidth.

Unlike the centralized architecture, where MCU has higher bandwidth than an ordi-

nary node, the distributed architecture requires each conference node transmits its

video to all the other nodes. Therefore, many bandwidth saving techniques are pro-

posed to leverage this problem, including application layer multi-cast and a request-

for-viewing system, as stated in [13,14]. Note that in this distributed structure video

from different conferees follows different network path to the receiver, the audio/video

synchronization is handled for each stream.

In conclusion, the video conference architecture can be categorized into centralized
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or distributed categories. The received video streams is usually a combination of all

the other conferees’ in a centralized structure while video streams are individually

received. No matter what video architecture is applied, in the proposed scenario, the

audio conference and the video conference are held in different network. Since the

audio and video conference is unlikely to be coordinated at a central device, we focus

on solving the asynchronism problem of audio and video at the receiver side in an

end-to-end manner.

2.2 Related Work

In a typical video conferencing system, audio and video signals are captured pe-

riodically at the source, fragmented into media data units (MDUs), packetized and

transported in real time to the destination in separate streams. To faithfully recover

the original form of the audio/video presentation, both the temporal ordering among

the MDUs in a stream and the relative temporal relationship among streams need to

be maintained. In other words, video conferencing applications require both “intra-

stream synchronization” and “inter-stream synchronization”. A common solution to

this problem is to use a receiving buffer, which can smooth out the delay variations

for each stream at the destination. By comparing the object timestamps as suggested

in MPEG standard [15], the received MDUs are first placed into a buffer temporally,

and then decoded and presented according to a predetermined fixed timeline. In the

following part, we review several related papers in synchronizing audio/video streams.

2.2.1 Conventional IP Audio-Video Synchronization

In most IP synchronization schemes, receiving buffer is essential as afore-mentioned.

The receiving buffer size determines the resistance of synchronization control scheme

to network delay jitters. Larger buffer size makes the scheme more resistant to large

network jitters. However, increase in buffer size also increases the delay before play-

back. For real-time services like teleconferencing, large delay may decrease the in-

teractivity of conference. Therefore to make a compromise, most research endeavors

propose adaptive buffering schemes for synchronization control as in [16–20]. Authors

of [16, 17] proposed an adaptive buffering scheme by piecewisely equalizing the end-

to-end delays of multimedia objects in order to suppress the synchronization phase

distortion with minimal trade-in of buffering delays. The generating time of mul-

timedia objects are time-stamped by the common local sample clock which is the

synchronization source shared by all outgoing media streams. At the receiver side,
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objects along different streams are scheduled to playback according to their playback

clocks to which a control mechanism using time-stamps as reference is employed.

Recent research schemes usually utilizes the timestamps included in the RTP

(Real-time Transport Protocol) packets which starts with a random number and

steps forward by sampling period to identify the matching audio and video slices for

synchronization playback. Authors in [21] proposed an adaptive transmission scheme

to ensure the continuous and synchronous playback of audio and video streams. Their

proposed adaptive scheme is composed of three stages, namely, (1) dynamic reorder-

ing mechanism, (2) decoding-recovery mechanism, and (3) adaptive synchronization

mechanism. The first two stages reorder the out-of-order packets and recover the

possible lost packets by proper algorithm according to the network status. The third

stage adaptively adjusts the queueing length to resist inter-arrival jitters and variances

of the end-to-end transmission delay. They claim that their adaptive synchronization

algorithm is able to control the queuing length precisely to eliminate the time-based

skew between the audio and video streams and minimize the end-to-end delay.

In [18–20], the authors proposed an adaptive delay and synchronization scheme

that (1) directly incorporates the quality requirement of the application into the pa-

rameters of the algorithm, (2) calculates the synchronization errors in real-time, (3)

piecewisely adjusts end-to-end delay by controlling the virtual local clock to adapt

to the network delay variation, and (4) gracefully recovers the synchronization if

synchronization error occurs. This scheme monitors the synchronization errors and

estimates the delay jitters among adjacent Media Data Units in real-time to com-

pensate for the delay jitters. While [18] focus mainly on the synchronization for

real-time streaming multimedia applications, [19, 20] concentrate on the audio/video

conferencing application. By maintaining a virtual clock according to the playback

time and arrival time at the receiver side, the synchronization control scheme can

adjust the clock to match the QoS requirement. In order to reduce the computation

load of synchronization while computing the correct match from the received RTP

and RTCP SR (Sender Report), authors in [22] proposed an efficient decision rule for

calculating the playback time without floating point operations.

To sum up, the above mentioned research mostly utilizes adaptive buffering schemes

for synchronization control. The basic control, which consists of appending synchro-

nization information (timestamps, sequence number, etc.), is essential for all algo-

rithms. However, in the proposed scenario, audio conference is controlled by the

telephony company while the video conference is held on the open IP network. Audio

signals from all the conferees are sent to the mixer owned by the company and then
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these signals are mixed and sent to other conferees. There is no timestamps of specific

speaker in the mixture. Therefore, conventional ways of audio/video synchronization

to match video and audio timestamps is not applicable.

Authors in [23] propose an interesting synchronization methodology that requires

no timestamps for audio/video synchronization. In this methodology, audio data is

embedded within the corresponding video frames by means of high bitrate information

hiding techniques. On receiving the video frames at the receiver, the embedded audio

data is extracted and played along with the host video frame. Nevertheless, in the

proposed scenario, the received audio stream might be a mixture of speakers from

different ends, it is impossible to embed the mixture in advance within the video

frames.

In conclusion, conventional synchronization control schemes usually depends on

the common timestamps on the audio/video streams for inter-stream synchronization.

The timing information can be recovered by these timestamps. Conventional IP au-

dio/video synchronization schemes mainly aim at providing an adaptive transceiving

scheme to accommodate the varying network delay and jitter which may disorder the

receiving packets or even incur packet drops.

2.2.2 Lip Synchronization

As described in the previous subsection, conventional works on audio/video syn-

chronization mostly require the timing information of audio and video to be appended

in the media streams. However, in the proposed scenario, even though the timing

relationship between audio and video can be stamped on both streams, the audio

conference server in the PSTN network might destroy this information while mixing

the audio streams from different conferees. Therefore, the receiver can only observe

a multiple-source mixture with no individual timing information of specific conferee.

Hence faithfully recovery of audio/video playback according to the timestamps is

infeasible.

Since the timing information attached at the sender is discarded while transmis-

sion, we think of another direction of retrieving the timing relationship between audio

and video streams at the receiver side. Since the only available useful information

from the audio conference is the audio stream itself, the most possible method of

recovering the timing relationship might be comparing the audio content to the IP

video stream.

As shown in Figure 3, the video stream and audio stream leave the sender to

different networks. While the video stream remains unmodified to the receiver, the
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audio stream may accumulate extra speakers’ voice and arrive as a audio mixture.

The concept of timing recovery by content comparison is to compare the received

video stream containing only the sender’s information to the received audio stream

which might be a mixture.

Since it’s the spoken speech that is of interest in the audio segments, the content

comparison is related to the research area called lip synchronization which is a techni-

cal term for matching lip movements with voice, as stated in [24]. Among the multiple

meanings of the term lip sync, it is referred to as the science of synchronization of

visual and audio signals during post-production and transmission.

The lip sync techniques can be applied to many interesting applications such as

automatic lip movement for animation characters as proposed in [25,26]. The authors

extract audio features from the input speech and then use a pre-trained neural network

model to map the pronounced speech to suitable visual lip movement and then show

on the character’s face. Since in this application the lip movement is pre-stored in

the phoneme database, it requires less image processing load, and thus is claimed to

be used for real-time application.

However, in the considering scenario, the lip sync is more related to the research

area as in [27, 28] which is usually applied to lipreading, speech recognition, and

audio/video synchronization. For all of these applications, the following issues should

be addressed:

1. face localization,

2. facial feature localization (e.g. the eyes and the mouth),

3. lips modeling,
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4. lips tracking and motion analysis,

5. identification and recognition.

On receiving each video frame, the human face should be first located, and then

the facial parts are identified. From the partitioned facial components, the lip shape

is analyzed and modeled. Combining consecutive video frames, the lip movement is

characterized for further identification and recognition. Meanwhile, the human speech

is segmented and characterized by speech features. Both the characteristics are fed

to the audio-to-visual model to find the correct mapping for matching determination.

Note that the matching determination is directly derived from the audio-to-visual

model which might not necessarily use phonemic analysis. After the matching deter-

mination, the timing information could be recovered from the results. Nevertheless,

the lip synchronization techniques have some inherent defects to be applied to the

proposed scenario which is discussed later.

An important issue of lip synchronization to the proposed scenario is the com-

putation load. Since most audio-to-video lip synchronization research focuses more

on the off-line applications, the computation load introduced in the image processing

stage is usually not the issue to be considered. However, in the proposed scenario,

even though the time for obtaining timing information is not as critical as real-time

applications, larger computation time may make the algorithm less reactive to the

variation of network characteristics. After the computation of timing information,

the network condition might have changed. Another issue is the large audio-to-visual

model. In order to achieve better identification performance, training data should

be used to establish the model which consequently require larger memory resource.

Because in the proposed scenario the teleconferencing devices could be a dual-mode

handset which has limited computation power and memory resource, the lip synchro-

nization techniques might not perform well in this scenario.

Another problem occurs when the audio stream consists of multiple speakers’

speech. Since the audio-to-visual model is trained by clear speech with the lip move-

ment, speech mixture may confuse the mapping process, thus resulting in wrong

judgments. This is the very problem that makes lip synchronization unsuitable for

the proposed scenario. In conclusion, from the discussions in this section, we con-

clude that directly compare the audio segments to the video frames might not be

applicable, either.



CHAPTER 3

A FRAMEWORK FOR AUDIO-VIDEO

SYNCHRONIZATION

From the previous chapter, we conclude that (1) in the proposed scenario the

asynchrony between audio and video stream could be a severe impact on conferenc-

ing quality, (2) traditional synchronization control schemes are not applicable for

their reliance on appended timing information at the transmitter, and (3) recovering

timing information by means of lip synchronization has its inherent challenges. In

this chapter, we propose a synchronization framework based on the concept of direct

comparison of transmitted contents from PSTN and IP networks. We extend this

concept further to audio to audio synchronization and discuss the potential problems

of using audio streams from both sides for synchronization.

3.1 Synchronization Framework

As concluded in the related work of lip synchronization, directly comparison of

audio segments and video frames might not be suitable. Therefore, we try to simplify

the problem so as to avoid the requirement of audio/video comparison. Instead

of considering synchrony in video and audio streams, the problem can be solved

by simply synchronizing audio streams from different networks. This concept of

simplification is elaborated in the following paragraphs.

3.1.1 Concept of Simplification

Inspired by the afore-mentioned related work [23], adding audio information in

the video stream is attractive because the timing information between this appended

audio and the video streams is easily derived. At the transmitter side, not only

video frames but also audio information related to the current audio stream are sent

through the IP network to the receiver as shown in Figure 4. This direct timing

relationship between appended audio and video streams can be achieved by either

timestamping the audio information or embedding the hashed audio information in

the video packets as suggested in [6].

15
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Figure 4: The concept of problem simplification

As a result, after the extra audio information from the IP network is received

at the receiver side, it can be used to determine the timing relationship with the

PSTN-audio stream. Consequently, together with the timing relationship between

the extra information and video frames, the synchrony between IP-video and PSTN-

audio streams can be achieved.

3.1.2 Proposed Framework

Based on the concept of audio synchronization, we propose a synchronization

framework as shown in Figure 5. In Figure 5, the audio conference is held by the

audio conference server located in the PSTN network. Conferees attend this audio

conference via various kinds of teleconferencing devices, including a traditional POTS

phone, a GSM phone, a dual-mode pocket PC, a dual-mode smart phone, and even

a laptop using IP soft phone. On the other hand, the video conference is held only

among the dual-mode pocket PC, the dual-mode smart phone, and the IP soft phone.

The video conference could be supported by either a central video conference server

or in a distributed manner.

For the conferees of video conference, since the audio stream and video stream are

from different network, we propose an end-to-end audio/video synchronization module

equipped with them so as to accommodate the asynchronism between audio stream

and video stream. This audio/video synchronization module recovers the timing re-

lationship between audio stream and video stream based on an audio synchronization

scheme without any help from the audio or video conference server. Therefore this

end-to-end approach can recover the timing relationship without modifying the net-

work infrastructure.
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A more detailed block diagram of the proposed synchronization module is shown

in Figure 6. When the conferee receives the video stream from IP network and au-

dio stream from PSTN network, both of them are fed into two buffers which are the

playback buffer for audio/video playback and the additional buffer inside the synchro-

nization module for synchronization determination. We design the synchronization

framework as trigger-driven since once the audio and video streams are synchronized,

there is no need to waste computation power on the synchronization algorithm if the

network condition doesn’t varies a lot.

Whenever synchronization is triggered, the synchronization module feeds the pre-

queued data inside the buffers to the synchronization algorithm which compares the

above data to determine the matching point of these two streams. Note that data

are pre-stored in the buffers so as to eliminate the data collecting time while synchro-

nization is triggered. The synchronization algorithm is the core of synchronization
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module. It locates the matching point of these two streams and then uses this infor-

mation for timing recovery. The resulting timing relationship is fed forward to the

playback buffer where common synchronization control schemes can be applied.

Additionally, whether the received audio/video streams need to be synchronized

depends on the synchronization trigger which can be determined by simply periodi-

cally or by network statistics obtained in the RTP packets. For example, according to

the network statistics in IP network, if the delay or jitter exceed a certain threshold,

the trigger can conclude that the video and audio might be asynchronous, thus trig-

gering the synchronization. Further discussion on the design of the synchronization

trigger is out of the scope of this work, so it is not included afterwards.

In conclusion, the proposed approach to synchronization is try to directly compare

the received contents from PSTN and IP network for timing recovery. In the following

context, first a measurement of asynchronism of the proposed scenario is performed

so as to motivate the requirement of synchronization. Then the content used for

comparison in the framework is discussed in the following part.

3.2 Asynchronism Measurement

Before the discussion of synchronization algorithm, the first question is that

whether the asynchronism between audio and video really affects the conference ex-

perience. In other words, if no synchronization is performed, will the audio and video

streams be so asynchronous that conferees may feel uncomfortable? In this section,

several experiments are conducted to evaluate the degree of effect of asynchronism

between PSTN audio and IP video in the proposed scenario, in order to motivate this

research. The results reveals that conferees might feel perceptually uncomfortable in

terms of delay difference and variance between audio and video streams.

3.2.1 Experiment Setup

In order to inspect how severe the asynchronism between audio and video may be,

a simple testbed, as shown in Figure 7, is set up to measure the delays of audio and

video traversing over different networks. According to the difference of delays of two

sides, whether this asynchronism causes perceptual awareness can be determined.

On the one hand, for measuring the end-to-end delay of audio conference, using

common one-to-one phone call is not enough since conferencing might include extra

delays while processing the multi-end audio streams. We use the multi-party call

service provided by CHT Telecom to hold an audio conference. Three conferees
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Figure 7: Testbed setup for audio conference delay measurement

which are a POTS phone, a 3G dual-mode pocket PC, and a laptop equipped with

BenQ GSM/GPRS/WLAN PCMCIA card are attending this conference.

When the audio conference is held, the POTS phone is kept silence. The speaker

pronounces a beep sound to the microphone on the dual-mode handset. The beep

sound goes through both the PSTN network as the audio input from the dual-mode

pocket PC and the open space (the dotted line) to the the laptop. Then these two

waveforms are recorded using GoldWave [29] at the same laptop. In that way, the

difference in time of these two waveforms which represents the end-to-end delay can

be obtained manually, as shown in Figure 8. In Figure 8, there is a chain of input

and output sets. Within each input and output set, the differences of waveform start

point represents the end-to-end audio delay.

For the video stream delay measurement, the main objective is to inspect on the

delay of video transmitted along the IP network. Therefore, for simplicity we make the

laptop perform as a video streaming server and the pocket PC as a streaming client.

Both the streaming server and client use wireless connections for network access, so

as to simulate the situation for handsets. While the streaming server sends out QCIF

format video to the client, the laptop simultaneously sniffs on the stream and record

the transmitted packets. At the client side, another packet sniffer is included to sniff

on the receipted packets. From the recorded time differences of the sniffed packets,
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Figure 8: The recorded audio input and output from the audio conference

we can compute the delay of the video stream.

Note that, since the packet sniffing is performed on different laptops, the time clock

might be asynchronous. Therefore, before the sniffing process, these two laptops have

to be synchronized by Network Time Protocol (NTP), proposed by [30]. Although the

NTP might not be able to perfectly synchronized these two laptops, authors in [31]

claim that the synchronization error is only few milliseconds in LAN’s and a few tens

of milliseconds in WAN environment.

Another aspect of this video measurement is that we only consider one video

stream to the receiver. Since more conferees in the video conference in a distributed

manner may increase the traffic load, the end-to-end delay may also be increased due

to the limited bandwidth.

3.2.2 Measurement Results

The measurement of audio conference delays is shown in Table 1 while the delay of

video packets is shown in Figure 9. For the result of delay in audio conference, we first

measure the delay of simple one-to-one calls as a comparison to the delay of 3-party

calls. We can observe that in a 3-party call the delay is usually more than 400 ms,

while the delay of a one-to-one call is usually between 300 to 400 ms. Although the

average delay value may vary among different time of experiment, the delay variance

is kept small during the same call.

Furthermore, the 3-party call usually results in longer delays than the one-to-one

call. This additional delay might be introduced by the conference bridge that mixes

the received audio and dispatches to the required speaker. Since the PSTN network

is run and controlled by the telecom company for mainly audio transmission, the



3.2. ASYNCHRONISM MEASUREMENT 22

Table 1: Measurement of audio conference delays

1 to 1 talk Delay in ms Average
First call 376 373 374 376 374 374.6

Second call 327 321 326 322 328 324.8

3-party talk
First call 412 412 414 414 415 413.4

Second call 434 438 442 435 441 438.0

Table 2: Measurement of video delays

End Point Delay in ms Average
Lab to Lab 6 6 7 8 6.8

Library to Lab 25 31 24 28 27.0

network reveals a rather steady and QoS-guaranteed behavior. Therefore, the delay

of audio conference is usually maintained at a certain level and the delay jitter is

usually small.

On the other hand, the video delay is measured in two places. While the streaming

server always stays in our lab and is connected to our own AP (named TONIC1),

the streaming client is connected to the NTU campus AP either in our lab or in the

library. The result is listed in Table 2 while Figure 9 shows one of the experiments.

The results show that the delay is only around ten milliseconds while the streaming

client is connected to the NTU AP near our lab, and also the variation in delays low.

This may be due to the low traffic loads of these two APs and the short distance

between them since they are in the same building which implies fewer intermediate

routers are traversed. However, for the delay measured when the streaming client is in

the library, the delay value is larger and there are several spikes indicating large delay

variation. Since there are more WLAN users in the library and the longer distance

between APs requires more intermediate routers to traverse.

The difference of measured audio and video delay is about 300ms. According

to [32] which claims that ±160ms of asynchronism between audio and video is ap-

proximately the threshold for human awareness, a 300ms skew in synchronization

is large enough for human awareness. Therefore, the synchronization algorithm is

required even when this simple environment.
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Although the video delay value is small which may not be the case for practi-

cal scenario, these measurement has revealed the key characteristics of IP network.

When the traffic traverse through a long distance, the growing number of interme-

diate routers and the included traffic loads from other users may add uncontrollable

delays to the traffic. The situation becomes even worse when the link involves wire-

less connections since wireless transmission could be severely affected by the current

environment.

To compensate for the delay variation of IP video packets, playback buffers are

usually applied to absorb the delay jitter. However, if the network dynamic exceeds

the capability of playback buffer, buffer underflow or overflow may occur and thus

the playback time may be adjusted. Since the PSTN audio is completely ignorant to

this adjustment, the asynchronism may become larger. As a result, we conclude that

synchronization is necessary to provide a better conference experience.

3.3 Challenges of Audio Synchronization

Nevertheless, when the problem is simplified to audio synchronization, several

challenge might appear which might affect on the performance of audio synchroniza-

tion. We individually elaborate on the challenges in the following paragraphs.
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3.3.1 Distortion by Voice Codec

In order to reduce the bandwidth requirement and to increase the robustness to

lossy channel, the audio signals are usually encoded before transmission, especially

when the channel contains wireless connections. The widely used voice codec in PSTN

network for GSM and UMTS voice is the Adaptive Multi-Rate codec while in VoIP

application various types of codec such as G.723 and G.729 can be chosen from.

Since voice signal is considered to contain a lot of redundancy, the design of

voice codec usually remove the redundancy to a certain level, thus resulting in a

lossy compression. Since different network uses different voice codec, the discarded

components might be different, therefore, the recovered audio waveform might be

different. Difference in audio waveform might introduce a potential problem in the

process of audio matching.

3.3.2 Distortion by Noise

In practical conversation, more or less noise is included in the audio stream. The

noise could be due to different sources such as thermal noise, and environmental noise.

No matter how the noise is induced, it does affect on the audio waveforms. However,

for the conferee whose audio/video streams are to be synchronized, if the noise is

introduced at the conferee, the effect of noise on comparison might be less since both

audio streams contain this noise. On the other hand, if the noise is introduced by

other conferees in the audio conference, this noise adds additional difference to these

two audio streams.

3.3.3 Interference by Other Conferees

As illustrated in Figure 4, as the audio stream go through the PSTN network,

multiple speech sources might be accumulated by the conference server to form a

mixture and then is dispatched to the conferees. Therefore, the receive audio stream

from the PSTN network could be a mixture of multiple speakers while the audio

information from the IP network contains only the information of one specific speaker.

The synchronization algorithm may take the audio information of the specific

speaker to find a correct match in the audio stream from PSTN network. If the

multiple sources in the audio mixture are well-partitioned, namely, there is no over-

lap in time between different sources, then the synchronization still can perform well

since the audio of the specific speaker is undistorted. However, in practical audio
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conference, speakers might strive for making statements while keen discussion. Con-

sequently, it is very likely that multiple speeches may overlap in time. The waveform

of the specific speaker might be distorted by the overlapping speeches and thus put

a challenge to the audio synchronization algorithm.

3.3.4 Packet Loss in Wireless Connection

It is well-known that the unstableness of wireless connection may incur packet loss.

Meanwhile, in real-time applications, packet loss might not only be due to the loss

in transmission channel but also be in consequence of out-of-date packets. Therefore,

packet loss is very common for audio streams via wireless connection. In [33], many

algorithms that try to conceal the lost packets in the audio stream so as to recover

the original audio.

For speech signals, due to the characteristic of speech waveforms, usually the

concealing algorithm simply duplicates the previous received packet to fill in the lost

packet. As long as the gap is small, this algorithm can achieve an acceptable quality

to human hearing system. However, this packet duplication still distorts the original

waveform. Therefore, the synchronization algorithm might be confused to the loss-

concealed audio. Note that for the wireless connections in the path of PSTN audio

stream, the packet loss are usually small as a result of the wide coverage of base

station and the under-controlled PSTN network. Hence in the following discussion,

we focus on the loss of wireless connection in IP audio.

3.3.5 Reactiveness to Network Dynamics

The synchronization may not require the capability of realtime process since the

synchronization is not triggered all the time. However, if the synchronization module

spends too much time on the computation, when the timing information is obtained,

it might be stale and useless. The situation becomes even worse if the network

environment is highly dynamic. Therefore, the required computation time for the

synchronization module is also an important issue in designing the synchronization

algorithm.

Regarding to Figure 10, when the synchronization module is triggered at Ttrigger,

the speech segments in the audio buffers (X(t) and X(t)+Y(t)) are fed to the syn-

chronization module. The required computation time for synchronization module to

obtain time shift τ is defined as the time period Tsync specified in the figure.

To evaluate on the reactiveness of an algorithm, we apply the tic and toc functions

provided in MATLAB [34]. At the beginning of the synchronization module, tic
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Figure 10: Synchronization computation time

function is set to start a stopwatch. Then after the synchronization process completes,

toc is set to stop the stopwatch and then store the current elapsed time in toc,

hence, from toc we can obtain the computation time Tsync. Nevertheless, since the

computation time is processor dependent, different processor may results in different

computation times. Therefore, the total flop count of the synchronization algorithm

is also provided to show the relationship between flops and computation time.

In conclusion, we have simplified the synchronization problem to simple audio

synchronization. While the receiver receives the two audio data, the synchronization

algorithm should be able to locate the matching point in the audio so as to recover

the timing information. Additionally, as described in the subsection above, the syn-

chronization algorithm should also conquer the afore-mentioned challenge. Therefore,

in the latter chapters, we focus on the discussion of possible means of synchronization

algorithm and their pros and cons against the challenge.



CHAPTER 4

SYNCHRONIZATION BASED ON CROSS

CORRELATION

In the previous chapter, we have concluded that the synchronization problem

can be simplified to the synchronization of the PSTN audio stream to the appended

audio information in the IP video stream. This audio information come along with

the video stream could be a complete audio stream as in common video calls. Then

intuitively, the synchronization algorithm can be simply comparing the waveform of

these two audio streams and searching for a matching point where this two streams

are synchronized.

Note that this audio stream arrived via IP network consists of only the speech

of the specific speaker who generates the video stream, while the other audio stream

from the PSTN network could be a mixture of multiple conferees. Therefore, afore-

mentioned challenges may arise. In this chapter, we first examine on the effectiveness

of using time domain features of audio waveform for synchronization against the chal-

lenges. Then we adopt the time domain cross-correlation to determine the similarity

between these two audio streams. Larger correlation coefficient indicates higher sim-

ilarity between the comparing audio segments, and thus suggests larger probability

to be a correct match point.

4.1 Time-domain Audio Features

As previously suggested, extra audio stream could be added to the IP traffic flow.

After these two audio streams are received, they are stored in the additional buffers

inside the synchronization module. When the synchronization module is triggered, a

segment of the IP audio stream is chosen to compare to the PSTN audio waveform.

The size of the PSTN audio buffer restricts the search range to be compared. Every

comparison chooses one segment of the audio waveform within the search range. The

objective of synchronization is to locate the most similar segment of the PSTN audio

to the IP audio segment. From this match we can determine the time shift between

PSTN and IP audio streams. Thus PSTN audio and IP video streams could be

synchronized, since the timing relationship between video and this IP audio stream

27
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can be reconstructed by conventional audio/video timestamps.

Although the waveform-comparing algorithm can use a simple square error of

the waveform samples as metric, small distortion to the waveform might severely

affects the effectiveness of this algorithm. Therefore, the synchronization algorithm

should be able to recognize the important trends or patterns in the waveform so as to

locate the time shifts. According to the conventional speech processing techniques,

the commonly used time-domain speech features that are used to segregate auditory

cues are the peak-to-peak period, pitch, and the envelope measurement, as suggested

in [35].

Since the waveform is easily distorted by noises, to acquire the features, pre-

processing stages, such as low-pass filtering and moving average, are usually applied.

The peak-to-peak period and the pitch measurement are related to the determination

of fundamental frequencies. Because of the quasi-periodicity of speech signals, in a

small period of time the neighboring peaks might reveal the inverse of the frequency

components. If the receiving speech is clear, peak-to-peak periods can usually serve

as the metric to differentiate different auditory cues. However, the performance is

seriously corrupted by the noises and interferences.

On the other hand, pitch is a relatively more reliable feature in obtaining frequency

information. The commonly adopted method of pitch computation is the autocor-

relation function. Many variations of autocorrelation is develop and adopted in the

field of pitch extraction, such as [36]. Within a certain range, a windowed speech

segment is chosen to compute the pitch information in that speech segment. Due to

the quasi-periodicity of speech signals, the neighboring peaks in the autocorrelation

result reveals the fundamental frequency of the selected segment. If the speech signal

contains only single speech, the pitch detection technique can usually achieve proper

accuracy for auditory cue segregation. Even for speech mixtures, the multi-pitch de-

tection technique can still obtain fair performance, as long as the interference is of

different fundamental frequency or small.

The envelope is determined as a short-time moving average of the signal energy,

realized by low-pass FIR filtering of the squared signal. The filter order is chosen as a

compromise between envelope smoothing and ability to follow fast energy changes on

the boundaries of voiced/unvoiced parts of the speech signal. The shape of envelop

represents how the speech segment is packaged, and thus can be used for speech seg-

regation. For clean speech, the voiced/unvoiced parts and different speech segments

can be distinguished from the envelop. Since the high frequency noises are filtered

out by the low-pass FIR, energy envelop should be resistant to noises. However, if the
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speech is mixed with another speech, the envelop might reveal the shape of speech

combination, and therefore is different from the original clean envelop.

Although the afore-mentioned time domain features may perform well in specific

research fields, the performance might be affected in certain circumstances. However,

as suggested in the pitch detection research field, the autocorrelation function seems

to be robust to minor distortion of the original signal. Hence, we consider that the

correlation function might be helpful in comparing the similarity between speech

segments.

4.2 Cross-Correlation-Based Synchronization

Inspired by the research area of Correlation Pattern Recognition (CPR), we choose

cross correlation in the discussion of time-domain synchronization because it is con-

sidered robust and general in the field of pattern recognition, whose main goal is to

assign an observation into one of multiple choices, as described in [37].

4.2.1 Basics of Cross Correlation

Cross correlation which is widely adopted in many area tries to capture how similar

or different a test object is from the specific object. The commonly used quantity of

measuring cross-correlation similarity is the correlation coefficient, usually noted as

r, which is defined as

r =

∑N
i (x(i)−mx)(y(i)−my)√∑N

i (x(i)−mx)2 ×
∑N

i (y(i)−my)2

, (4.1)

where x(i) and y(i) are the comparing objects and mx and my are the mean of them.

The definition of correlation coefficient r shows that at sample i if x(i) and y(i)

deviate from their own mean by a similar amount, the normalized product of their

differences to means may results in a value near 1. The overall correlation coefficient

is similar to the mean of the normalized products. This property implies that the

correlation coefficient can faithfully represent the similarity of two signals. Therefore,

If two comparing speech signals have similar waveforms, the correlation coefficient

may acquire a value approaches 1. This characteristic of correlation coefficient could

be applied as a metric in determining the similarity of two speech signals.

4.2.2 Cross-Correlation Synchronization Module

Based on the cross-correlation function, we design a synchronization module as

illustrated in Figure 11. When audio signals are received from either IP network or
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Figure 11: Synchronization module using cross correlation

PSTN network, they are first fed into respective audio buffers. When the synchro-

nization process begins, a matching window of specific size is chosen from the IP audio

buffer and then sent to the synchronization module. Accordingly, the synchronization

module will iteratively select a matching window from the PSTN audio buffer, from

the beginning toward the end of search range, to cross-correlate with the matching

window from the IP audio buffer. The correlation coefficient obtained for these two

windowed segments and the position of the PSTN matching window are recorded.

After each iteration, the matching window in the PSTN audio buffer shifts by a

certain search step while the matching window in the IP audio buffer remains still,

until the end of the search range. In the end iteration, the matching window with

highest correlation coefficient is found at the match determination stage, and then is

referred as the matched window. Thus the synchronization point is accordingly set.

4.3 Design Issues

Note that in the synchronization module, the matching window size and the search

step size are not yet determined. However, different size settings may affect on the

accuracy of similarity determination against waveform distortions. Therefore, in the

following parts, the effect of parameter settings if examined.
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Figure 12: Auto-correlation with different matching window sizes

4.3.1 Matching Window Size

Practically, while synchronizing two audio inputs, we can only have limit length

of signal for cross correlation, regarded as the matching window. Signal of length of

the matching window from the IP audio buffer is cross-correlated with the matching

windows within the search range of the PSTN audio buffer.

The first issue arises in that the length of matching window may affect the accuracy

of synchronization judgement. Figure 12 shows the autocorrelation of a speech signal

with window sizes of 8ms (64 samples) and 128ms (1024 samples). Since speech signals

are considered quasi-periodic, the neighboring waveforms may seem similar to each

other, as shown in Figure 13. Therefore, the resulting correlation coefficient might

achieve peaks at the quasi-periods. This characteristic results in the high correlation

coefficients around the zero-shift point.

The situation becomes even worse when the matching window size is small since

the containing signal information is less. Therefore the correlation coefficient still

remains at a high level at large shifts– over 400 samples (about 50ms) with 8ms

window size for example. When the original speech is unclean, noisy or interfered, the

correlation coefficient at the zero-shift point may easily be diminished to a level lower

than other peaks around the zero point, and thus resulting in wrong synchronization.

Therefore, in order to acquire distinguishable peak at the zero shift and suppress
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Figure 13: Quasi-periodicity of speech

the coefficient at neighboring shift so as to achieve better robustness against waveform

distortions, using a larger matching window seems to be one solution to the above

issue.

4.3.2 Search Step Size

Another parameter to consider is the search step. The search step represents the

number of samples that the matching window step shifts at each iteration. Since

the search step determines the possible positions of the matching window, different

search step implies that different part of the speech within the search range is cho-

sen for cross correlation. This implies that the the matching window might skip the

correct matched window while searching within the search range. This phenomenon

is referred as the matching window misalignment. As illustrated in Figure 14, the

matching window starts at different positions of the PSTN audio buffer in each itera-

tion, according to the search step. It is possible that the matching windows might not

start at the same position as the correct matched window. For example, in Figure 14,

the correct matched window lies within the third and the forth matching windows,

instead of exactly the third or the forth matching window.

However, if the correlation coefficient obtained at the neighboring matching win-

dow, which covers the correct matched window, are still larger than the windows far-

ther from the correct match, the determined synchronization point might be shifted

from the correct point by an error bounded by he window size. Nevertheless, the
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autocorrelation of speech shown in Figure 15 suggests that the correlation coefficient

drops steeply when the time shift is only a few samples away from the zero point.

Hence, choosing the segment with largest coefficient as the matched window may

result in wrong judgment.

In order to overcome the matching window misalignment problem, the search

step should be as small as possible. The safest search step to ensure that the correct

matching window will be checked is of course the 1-sample step size which implies

that every possible matching window within the search range is examined.

4.3.3 Short Conclusion

To sum up the discussion on design issues of using cross correlation as the synchro-

nization algorithm, we conduct an experiment on the performance of synchronization

using cross correlation with different matching window sizes and search steps. A

speech is cross-correlated with its decoded version after G.729 codec which includes

a time shift of 60 samples. The result is shown in Figure 16.

In Figure 16, we determine the accuracy of the algorithm to allow a ±10ms (80

samples) error range. It is shown that even larger window size can guarantee larger

accuracy, however, for search step larger than 4 samples the accuracy may saturate

and couldn’t reach 100%, regardless of the window size. The reason to this inaccuracy

is because the search steps larger than 4 samples we used are not factors of 60. Hence,

the matching windows within the search range can never be aligned to the matching

window to be compared. However, for search steps of 8 and 16 samples, since they

are small relative to 60, they might have a larger probability to locate match points

within the error range. Meanwhile, for step size larger than 16 samples, the accuracy

is too low to be acceptable.
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Figure 16: Accuracy of cross correlation with different settings
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Figure 17: Number of multiplications required for synchronization

The result in Figure 16 suggests that larger window size and smaller step size can

ensure better accuracy of the synchronization algorithm. However, larger window size

implies more samples to be computed in the cross correlation while smaller step size

implies more matching windows to be cross-correlated. The complexity might be an

issue for the devices with limited computation power. Hence, we try to analyze the

possible complexity for different window sizes and search steps.

For a search range of T samples, the counts of cross correlation to be computed

CXCOR with search step S can be determined as CXCOR = bT
S
c+1. For each computa-

tion of correlation coefficient, according to Equation 4.1, the number of multiplications

contains the multiplication in the numerator, the two squares in the denominator, and

the multiplication of the two summations in the denominator. Besides, although the

square root requires more computation, we treat it as a multiplication here for sim-

plicity. Therefore, the amount of multiplications in each correlation is about 3N + 2,

where N is the number of samples in the matching window. The total number of

multiplications for the complete synchronization point searching is

NMultiply = (3N + 2)× CXCOR = (3N + 2)× (bT
S
c+ 1). (4.2)

Assuming that the search range is 1 second, the required number of multiplications

for synchronization for different window sizes and search steps is shown in Figure 17.

From Figure 17 we can observe that if a search step of 1 sample is chosen, the required

multiplications grows fast as the window size increases. Although the 1-sample search

step can ensure the correct matched window to be searched, a larger matching window
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Figure 18: Computation time for synchronization using cross correlation

is essential for suppressing neighboring coefficient peaks as afore-mentioned. Hence,

the number of multiplication in the synchronization algorithm might reach the order

of 108.

Different CPU implementation might spend different CPU cycles for multiplica-

tion. Assuming 10 CPU cycles is required for one floating-point multiplication, for a

500 MHz CPU, the synchronization might spend a few seconds to learn the synchro-

nization point, and thus making the synchronization module less reactive to network

dynamics. To acquire a clue of how much the computation time is required, we use

MATLAB to implement the cross-correlation-based synchronization algorithm and

measure the required computation time by the tic and toc function. The synchro-

nization process is performed on an laptop with single-core 1.73GHz CPU and 1GB

RAM while the search range is set to 1 second.

The computation time is shown in Fig 18, along with the flop count in Figure 19.

From Figure 18, we can observe that the required computation time for synchroniza-

tion may grow to tens of seconds if the search step is small and matching window

is large. The flop count in Figure 19 shows the same tendency. Note that the flop

count analysis results in a similar order of numbers as in Figure 17 where only mul-

tiplications are considered. Therefore, while choosing the search step and matching

window size, this issue should also be considered.



4.3. DESIGN ISSUES 37

1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3
x 10

8

Search Step Size (samples)

Fl
op

 C
ou

nt

(a) Change Search Step Size

 

 

32 64 128 256 512
0

1

2

3

4

5
x 10

8

Matching Window Size (ms)

Fl
op

 C
ou

nt

(b) Change Matching Window Size

 

 

Matching Window=32ms

Search Step=8 samples

Figure 19: Flop count of cross correlation synchronization
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Figure 20: Decoded waveforms of speech signals

4.4 Performance Evaluation

In the previous chapter, the possible challenges for audio synchronization are

elaborated. Whether cross correlation can overcome those challenges is discussed in

the following parts.

4.4.1 Codec Distortion

To simulate the result of real audio signals, the audio signal should be encoded and

decoded using common codec applied to 2G/3G phone or VoIP. For the traditional

telephony system, Adaptive Multi-Rate (AMR) compression [38] is usually applied to

compress the audio signal, while for the VoIP system, among the various voice codecs

G.729 codec [39] is chosen for simulation here. Part of the decoded waveforms is

shown in Figure 20. We can observe that although these two waveforms are different

in temporal structure, they have similar variations in time. This is because different

codec may neglect different time redundancies while the frequency characteristics are

preserved.

Since the decoded waveforms have similar variations, the correlation should still

maintain at high level. Figure 21 shows the correlation coefficient with different

window sizes. Since the short-time temporal structure is modified by the codec, if a

too small window is chosen the coefficient might have a low peak at the 0 shift, and

thus is easy to be affected by other distortions. However, with larger window size,

the correlation has a sharp peak at the 0 shift and quickly descends as expected.
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Figure 21: Correlation coefficients of decoded waveforms

4.4.2 Noise Distortion

Since the thermal noise is the most common source of noise, we focus our discussion

on the distortion by thermal noise, which is usually modeled as an Additive White

Gaussian Noise (AWGN). The variance (σ2) of the AWGN determines the energy

level of noise. By adding the AWGN with different energy level (σ2) to the source

speech, the effect on correlation (r) is shown in Figure 22. The upper two graph shows

the waveform and correlation with (σ2 = 0.0001). The correlation seems not to be

affected by this small noise. However, as the noise energy increases, the correlation

coefficient drops. Note that a noise with 0.01 energy level is almost the energy of

lower volume parts in the source speech. Therefore, the effect of noise at this level is

comprehensible.

Since the coefficient at the 0 shift is lowered by the noise, the accuracy of corre-

lation might also be affected. Figure 58 shows the accuracy of synchronization when

one of the source speech is noisy. Both the source speeches are encoded and decoded

respectively according to previous discussion. By allowing an error range of ±50ms,

we can observe that the accuracy of synchronization is lowered by the noise. Even

though a larger window size is chosen, the accuracy is still limited to lower than 100%.
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Figure 22: Effect of noise on correlation
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Figure 23: Performance of correlation against noisy signal
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Figure 24: Performance of correlation against interferences

4.4.3 Overlapping Speakers

Another issue is that during an audio conference, there may be times when multi-

ple speakers speak at the same time. Hence, the receiver may receive a mixed speech

combining multiple speeches from the PSTN auido stream. In order to simulate

this situation, the comparing AMR-decoded speech is mixed with other interfering

speeches. Since the source waveform is severely distorted by the interference which

has similar energy level, the correlation coefficient at the 0 shift point is apparently

lower. However, unlike the AWGN noise adds noises at the same level on the overall

speech, different speeches might not always maintain at the same high energy level.

Therefore, the effect of interference might not be as severe as noise.

Figure 59 shows the effect of interference on correlation. From the upper two

graphs, we can observe that the correlation coefficient is substantially lowered at

the 0 shift point. This suggests that in this situation, the cross correlation may be

vulnerable to other distortions. However, since the correlation value is also suppressed

at other shifts, the performance while a 250ms window is applied remains high. But
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Figure 25: Packet-loss-concealed speech waveform

for small window size as 100 ms, since the coefficient at the 0 shift is lower than

that of larger window sizes, it is more vulnerable to interference, and thus has lower

accuracy than others.

4.4.4 Packet Loss

In practical application, the audio signal from the IP network may be severely

affected by the channel condition. High error rate of the wireless connection and

network congestion may cause packet loss at the receiver side. Although delicate

packet loss concealment algorithms, according to [33], might be applied to compensate

the effect of lost packets, most of the current applications use the simplest way which

simply duplicates the packet in front of the lost packet. As shown in Figure 25, several

packets, according to the loss rate, of the original G.729-decoded speech is lost and

concealed by the duplication of the previous packet. The packet size is specified to

contain 10ms speech. If more than three consecutive packets are lost, then the gap is

filled with zeros, as suggested in [33].

Graph (a) in Figure 60 shows the performance against packet loss. Because of

the duplication of the previous packet, the quasi-periodicity makes the coefficient less

affected by the packet loss. Therefore, the performance can remain higher than 90%

even though more than half of the packets are lost. However, the level of correlation

is still decreased by the lost packets, and thus makes it vulnerable to other sources

of distortions. Graph (b) to (d) simulate the situation that the IP audio is distorted

by packet loss while PSTN audio suffers from other interferences. The accuracy is
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Figure 26: Performance of correlation against packet loss

severely affected by the additional interferences in the PSTN audio, even when the

window size is set to 250 ms.

In consideration of practical situation, Figure 62 shows the performance of cross

correlation when multiple sources of distortions occurs. We can observe that the per-

formance is severely degraded by these extra distortions since cross correlation bases

only on time-domain signal. Even though the distortion level is low, the performance

is largely affected. Additionally, although increasing the matching window size can

slightly improve the accuracy, the performance is limited.

4.4.5 Short Conclusion on Performance

From the above evaluations, we can observe that cross correlation can usually

sustain minor distortion on the waveform. But when the distortion level increases or

multiple distortions are included, the performance rapidly drops. Even large matching

window size can’t efficiently improve the performance. Additionally, to ensure high

accuracy of the synchronization algorithm, the cost of computation time, as shown

in Figure 18, may increase to tens of seconds. If the network is so stable that the

synchronization algorithm is not frequently triggered, the computation time for cross

correlation is not so important. Therefore, the search step and window size can be
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Figure 27: Performance of correlation against multiple sources of distortion

choose to the required value to ensure accuracy. However, if the network environment

is highly dynamic, the synchronization algorithm should be able to respond to the

varying network characteristics. Hence, then cross correlation may not be reactive to

this network dynamic. This has lead to a trade-off between high accuracy and high

reactiveness to network dynamics.

In conclusion, cross correlation is vulnerable to practical distortions because it

only considers the time-domain signal. The performance is limited. The main reason

that makes cross correlation time-demanding is that short time waveform is easily

corrupted by distortions, and thus large windows should be applied. On the other

hand, other time domain algorithms seem not as robust as the cross correlation which

can directly respond to the similarity of waveforms. Therefore, in order to make the

synchronization algorithm robust and less sensitive to short-time distortions, audio

features in other domains, which can best characterize the behavior of speeches within

a certain duration, might need to be considered.



CHAPTER 5

SYNCHRONIZATION BASED ON MFCC

In the previous section, we have concluded that using cross correlation for the

design of synchronization algorithm may be vulnerable to practical speech distortions.

When multiple sources of distortions are included in the speeches, the performance

is limited. Considering the correlation formula, the reason might be rooted in the

comparison of each sample which might already be distorted and thus requiring more

samples to extract the trend of waveform variation. Hence, if a representation of

speech can extract several essential characteristics which might not easily be distorted,

then potentially it should be robust to distorting sources.

Therefore, using other speech representations which might transform the original

speech into other domains is the focus of this chapter. This has lead to the field of

Digital Speech Processing (DSP) techniques. In this chapter, we adopt the commonly

used audio feature in speech recognition as the representation of speech for similarity

comparison. The robustness of this audio feature is evaluated in a way similar to the

previous chapter.

5.1 MFCC-Based Synchronization

In the synchronization module, one speech segment from the IP audio buffer is

used to search for a correct match in the PSTN audio buffer. The representation

should be able to recognize the correct speech segment among the search range.

This concept is analogous to the research of speech recognition which segments the

speech signal and search in the database for a match to this segment. As suggested

by any speech recognition research endeavors, Mel-Frequency Cepstral Coefficients

(MFCC) is the most widely used representation of speech signals in that it generally

can obtain better accuracy at relatively low computational complexity. Therefore,

whether MFCC is good enough as the representation for synchronization comparison

is first discussed.

45
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Figure 28: Block diagram for MFCC acquisition

5.1.1 Basics of MFCC

The process of acquiring the MFCC from a certain speech is illustrated in Figure

28. The block diagram mainly involves six stages which are introduced herein in

order.

Pre-emphasis For a speech signal x[n] = u[n] ∗ g[n], where u[n] represents lung

excitation and g[n] represents vocal tract response, the first stage into MFCC

is to be pre-emphasized. Due to the physiological characteristics of the speech

production system, high frequency components are attenuated while speaking.

High frequency formants may have small amplitude with respect to low fre-

quency formants. However, human hearing system is sensitive above the 1kHz

region of spectrum. Pre-emphasis performs as an high pass filter which can

emphasize the high frequency part to compensate the attenuation from speech

production.

x[n] ⇒ H[z] = 1− az−1 ⇒ x′[n] = x[n]− ax[n− 1] (5.1)

Windowing After pre-emphasis, x′[n] is then fed to a windowing function w[n] to

obtain successive and overlapping frames xt[n]. Windowing is needed because

theoretically, spectral evaluation approaches are in general for stationary signals

which only holds within short time intervals for voice signals. This is the so-

called short-time stationary. Usually each frame length ranges between 10 20ms.

Frame shift determines the length of time between successive frames. The most

widely used window shape is the Hamming window for its narrow main lobe

and low side lobes.

w[n] =

{
0.54− 0.46cos 2πn

L−1
, n=0,1,......,L-1;

0, otherwise.
(5.2)
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DFT and Mel-filter-bank Processing In this stage, spectrum Xt[k] is obtained

by feeding xt[n] to an L-point Discrete Fourier Transform. After that, Xt[k]

is then sent to a M-filter Mel-filter-bank. Each filter with different central

frequency may filter the input according to the frequency and use different tri-

angular function to get the weighted sum of filtered spectral components Yt[m],

where m = 0, 1, ......,M − 1. The filter-bank processing simulates human audi-

tory system which has high resolution at lower frequencies and the awareness of

pitch is proportional to the logarithm of frequencies. Within the bandwidth of

each filter-bank, human perception can’t identify the differences in frequency.

This bandwidth is referred to as the critical band.

Xt[k] = DFT{xt[n]}, (5.3)

Yt[m] =

fi+1∑
k=fi

wi •Xt[n], (5.4)

where wi is the weight of the triangular weighting function.

Logarithmic Operation Since phase information is not important for human per-

ception but signal energy is, the squared absolute value of Yt[m] is used. And

then because logarithm can compress the dynamic range of values like human

hearing system and make a convolved noise additive, logarithm is operated on

the output of squared absolute value of Yt[m].

Y ′
t [m] = Log(|Yt[m]|2) (5.5)

IDFT After the operation of logarithm, the lung excitation u[n] and vocal tract

response g[n] are now added together in log-spectral domain.

log|X[k]| = log|U [k]|+ log|G[k]| (5.6)

Since the log-power spectrum is real and symmetric, inverse DFT reduces to a

Discrete Cosine Transform (DCT) which produces highly uncorrelated features

yt. The components of excitation is now separated from vocal tract response

since excitation changes much faster than vocal tract. The feature extracted

from vocal tract response is easily separated by choosing only the first J compo-

nents which is usually set as 13. Each of these 13 components is usually referred

to as the MFCC bin.

yt[j] =
M−1∑
m=0

Y ′
t [m]cos[j(m− 1

2
)

π

M
], j = 0, 1, ......, J − 1 < M (5.7)
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Figure 29: MFCC of a period of speech

In conclusion of the process for MFCC, the main objective is to extract the human

vocal tract response which is directly responsible for human perception. On the other

hand, since the lung excitation is more like an impulse to the vocal tract, the exact

excitation information is not necessarily to be preserved. Note that due to the DCT

operation, the slower changing characteristics of vocal tract is kept at smaller MFCC

bins.

Figure 29 shows the corresponding MFCC value of a certain speech. The value

is normalized to the first bin which represents only the signal energy and thus is

omitted in the algorithm. Since the analysis window is half-overlapped in length,

the resolution of MFCC columns is only half of the analysis window. From this

figure we can observe that the MFCC value is usually within ±0.2. When the time-

domain signal looks similar, the resulting MFCC values are also similar. Based on this

characteristics of MFCC, next we will discuss about the synchronization algorithm.

5.2 Synchronization Algorithm Design

In this section, we discuss the design of synchronization algorithm for the syn-

chronization module. Inspired by [6], we slightly change the similarity metric in

the [6] and use this metric for searching of synchronization point. Generally speak-

ing, this similarity metric simply use the sum of absolute differences of the MFCC
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bins from different audio sources while a large difference is penalized by adding addi-

tional penalty value to this metric. Details of the synchronization algorithm is shown

in the following part.

5.2.1 Mathematical Analysis

Assume xu[n] as the unmixed speech signal from the IP audio buffer, xc[n] as the

speech signal from other conferees, xn[n] as noise, and xm[n] = xu[n] + xc[n] + xn[n]

as the received mixed speech from the PSTN audio buffer. Since the first three

steps of MFCC process are linear, xm[n] processed after the third step is Ym[m] =

Yu[m] + Yc[m] + Yn[m], where Yu[m], Yc[m], and Yn[m] are the outputs of the third

step, obtained by individually feeding xu[n], xc[n], and xn[n] to MFCC.

Thus, the MFCC value of xu[n] and xm[n] can be represented as the following

equations:

yu[j] =
M−1∑
m=0

log[|Yu[m]|2]cos[j(m− 1

2
)

π

M
]

=
M−1∑
m=0

2log[|Yu[m]|]cos[j(m− 1

2
)

π

M
]

(5.8)

ym[j] =
M−1∑
m=0

2log[|Yu[m] + Yc[m] + Yn[m]|]cos[j(m− 1

2
)

π

M
],

j = 0, 1, ......, J − 1 < M

(5.9)

Subtract Equation 5.9 by Equation 5.8 may obtain

ym[j]− yu[j] =
M−1∑
m=0

2log[
|Yu[m] + Yc[m] + Yn[m]|

|Yu[m]|
]cos[j(m− 1

2
)

π

M
]

=
M−1∑
m=0

2log[|1 +
Yc[m]

Yu[m]
+

Yn[m]

Yu[m]
|]cos[j(m− 1

2
)

π

M
]

<=
M−1∑
m=0

2log[1 + |Yc[m]

Yu[m]
|+ |Yn[m]

Yu[m]
|]cos[j(m− 1

2
)

π

M
]

(5.10)

In Equation 5.10, it reveals that ym[j]−yu[j] is restrained by | Yc[m]
Yu[m]

| and |Yn[m]
Yu[m]

| which

are like the inverse of “Mel-SIR and Mel-SNR”. The higher Mel-SIR and Mel-SNR,

the smaller value of ym[j]− yu[j]. If the inverses of Mel-SIR and Mel-SNR are small

enough with respect to 1, the difference value will approaches 0.

From the above derivations, if the received mixed speech signal is in synchrony

with the unmixed speech, the difference of the mixed MFCC of PSTN audio and the



5.2. SYNCHRONIZATION ALGORITHM DESIGN 50

m+ >=u

MFCC
Processor

MFCC
Processor

IP
Audio

PSTN
Audio

Similarity 
Metric

Bin-wise 
Subtraction

|m-u|

Penalty

yes

no

Xu 

Xm 

Figure 30: MFCC-based synchronization algorithm flow

unmixed MFCC of IP audio should be sufficiently small. Additionally, in order to

further differentiate the similarity metric of the correct match from other shifts, a

penalty value is assigned if the difference is so large that this matching window is

very unlikely to be the correct window. The author of [6] claims that since the mixed

MFCC contains the unmixed MFCC, the mixed MFCC should usually be larger than

the unmixed MFCC. However, according to Equation 5.10, if Yc[m]
Yu[m]

or Yn[m]
Yu[m]

yield

negative values, it’s possible for the mixed MFCC to get a smaller value than the

unmixed MFCC. Therefore, to compensate for this characteristic, the author of [6]

suggests to include an error factor to ensure accurate judgement.

5.2.2 Similarity Metric

In order to determine the similarity of received speeches, for each MFCC bin in

the MFCC of speech segment, the absolute difference of each mixed and unmixed

MFCC bin (m and u) is calculated. As described previously, the similarity metric

should includes a penalty value to further differentiate the correct match from other

shifts so as to withstand distortions. Besides, an error factor which represent the

fault tolerance is included to decrease possible error penalties.

The similarity metric is derived as follows:

B(m, u) =

{
|m− u|, if m + ε >= u;

p, otherwise,
(5.11)

where ε is the error factor, and p is a penalty value. For each bin in the MFCC,

B(m, u) is computed. Then B(m,u) is summed up over each MFCC of matching

window as the similarity value of that window. Note that the window size is de-

termined by both the analysis window of MFCC computation and the number of

analysis windows to be used for matching. The complete flow of MFCC-based syn-

chronization algorithm is shown in Figure 30. After the MFCC bins of both IP and
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Figure 31: Effect of codec on MFCC

PSTN audio are extracted, Xu is subtracted from Xm. For each bin (u and m) after

the subtraction, if m plus the error factor ε is larger than u, |m− u| is summed into

the similarity metric. Otherwise, a penalty value is summed, instead.

Note that since the MFCC acquired from an analysis window is a 13-entry column

vector, the analysis windows used for matching is referred to as matching columns for

simplicity. The author claims that the synchronized window should get the smallest

similarity value. Therefore, within the search range, the matched window can easily

be determined by taking minimum of the similarity metrics.

5.3 Performance Evaluation

We implement the algorithm using Matlab based on the MFCC code provided

by [40]. Following the similar flow of discussion in the previous chapter, the evaluation

of performance on distorted audio signals is discussed in this section. The size of the

analysis window is set to 32ms in the evaluation, and the tolerable error is ±32ms

which implies a shift of 1 matching column.
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Figure 32: Performance of MFCC against codec distortion

5.3.1 Codec Distortion

As discussed in the previous chapter, different codecs may neglect different time

redundancies and thus result in distinct waveforms. However, since the objective of

redundancy removing is to achieve higher coding rate while the human perception is

less affected, it should not severely influence the obtained MFCC. As shown in Figure

31, as expected, the MFCC bins of speeches after AMR and G.729 codec are similar,

except for some small variation which is included by different redundancy removing

criteria.

The performance shown in Figure 32 confirms the above inference. The percentage

of accuracy can easily achieve 100% as the number of matching columns is larger than

2 which is 64ms in length. Therefore, we can conclude that the voice codec may not

be an important issue if sufficient matching columns are used.

5.3.2 Misalignment of Analysis Windows

Unlike the search step in cross correlation, the a duration of audio signal is used

to compute the MFCC value as a whole. While the MFCC is obtained, the window-

ing function might not take the same part of the audio segments for IP and PSTN

network. Therefore, the obtained MFCC value might be different.

Figure 33 shows the effect of how misalignment affects the performance of MFCC.

We manually include different delays in the PSTN audio so as to make it shifted

away from the IP audio. We can observe that the performance may drop as the
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Figure 33: Effect of misaligned analysis window

PSTN audio is shifted away. However, as the time shift increases to near 32 ms, the

percentage of accuracy increases again. This is because for a time shift around half of

the analysis window size, the MFCC metric is more different than small shifts. When

the time shift is near 32ms that implies the MFCC value is more similar to the next

matching column. Hence the correct matched column moves to the next one which

is still correct.

Note that although using only one matching column may severely suffer from

the performance drop due to the analysis window misalignment, if more matching

columns are used, for example 5 columns, the percentage of accuracy can achieve

approximately 100%.

5.3.3 Noise Distortion

Similar to the discussion in cross correlation, we use AWGN noise for evaluation.

Figure 34 shows that the MFCC bins might be distorted by the additional noise.

However, we can observe that the noise mostly affects the lower MFCC bins. This

might because the AWGN noise is spread through the entire spectrum which implies

that the noise energy somewhat equally distributed in the spectrum with few varia-

tion. Therefore, after the DCT stage, the noise energy is kept in low MFCC bins as

the low variation part of vocal tract response.

However, since the higher MFCC bins are not severely affected, if more matching

columns are applied to compensate the effect on low MFCC bins, the performance
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Figure 34: MFCC with different noise level
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Figure 35: Effect of noise on MFCC performance



5.3. PERFORMANCE EVALUATION 55

2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

MFCC Bin Number

(a) Time 0 ms

 

 

2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

MFCC Bin Number

(c) Time 0 ms

 

 

2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

MFCC Bin Number

(b) Time 64 ms

2 4 6 8 10 12
−0.2

−0.1

0

0.1

0.2

0.3

MFCC Bin Number

(d) Time 64 ms

male 1
male 2
Combine

male 1
female 1
Combine

Figure 36: Effect of interference on MFCC

should not be too bad. As expected, Figure 35 shows that when only 2 matching

columns are applied, the percentage of accuracy rapidly drops as the increment of

noise energy. Nevertheless, if more matching columns are applied, for example 16

columns, the MFCC synchronization algorithm can usually achieve near 100% accu-

racy.

5.3.4 Overlapping Speakers

To verify the effect of overlapping speaker in the PSTN audio on the MFCC bins,

we try different combination of speeches to compare the variation of MFCC bins.

In Figure 36, we combine different gender speaker into the PSTN audio. The result

shows that the MFCC bins of speech combination seems to follow the MFCC of either

speeches in the combination. However, if the comparing IP audio is not the same as

the one that the MFCC of combination follows, then the similarity metric may yield a

large value at 0 shift point. Most of all, which speaker that the MFCC of combination

may follow is difficult to predict in advance.
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Figure 37: Performance against overlapping speeches

Additionally, according to Equation 5.10, there seems to be no apparent relation-

ship between the unmixed MFCC and mixed MFCC that can be used to determine

whether the mixed MFCC follows the unmixed speech. Therefore, it’s hard to filter

out the unmixed MFCC which is not the one that mixed MFCC follows so as to re-

move the cause of high similarity metric. This may severely corrupt the performance

of MFCC synchronization.

As shown in Figure 37, once the PSTN audio contains an interference from other

speaker, the percentage of accuracy suddenly drops, even though 16 matching columns

(512ms in length which is half the size of search range) are applied. As the increment

of speakers inside the mixture, the MFCC bins are so distorted that it can hardly

differentiate the correct match and other shifts. Therefore, we conclude that MFCC

may not be robust to interferences in the PSTN audio.

5.3.5 Packet Loss

In consideration of the packet loss that might be included in the IP audio, we

apply the same packet loss concealment method as previous chapter which simply

duplicates the previous packet for the lost one. Since the speech is inherently quasi-

periodic, the packet duplication might still preserve this quasi-periodicity. Therefore,

when MFCC tries to characterize the response of vocal tract from the speech, the

resulting MFCC bins may not be largely interfered, as long as the packet loss rate is
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Figure 38: Performance against packet loss

not so large that the essential components of speech are lost.

Figure 38 reveals the robustness of MFCC against packet loss while the lost packet

is concealed by the duplication of the previously-received packet. Although few

matching columns might not have enough information to differentiate the correct

match from other shifts, 4 matching columns may be quite enough for the common

loss rate of less than 20%.

In consideration of practical situation, Figure 62 shows the performance of MFCC

when multiple sources of distortions occurs. We can observe that since MFCC is

vulnerable to overlapping speakers, whenever a speech is mixed, the performance

is degraded. However, for non-overlapped speech, additional sources of distortion

doesn’t degrade the performance. In other words, if MFCC is robust to the sources

of distortions, the combination of distortion doesn’t largely affect the performance.

5.3.6 Short Conclusion on Performance

To sum up the afore-mentioned evaluations, using MFCC bins to find similarity

for synchronization seems to be a good option in that it is robust against many kinds

of source of waveform distortions, as long as sufficiently large matching columns are

applied. However, in the evaluation of performance against overlapping speakers in

the PSTN audio, we observe that the percentage of accuracy is severely corrupted

by the additional speeches. Besides, even though large matching columns are applied

the performance doesn’t show major improvement. This may be a problem since in
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Figure 39: Performance against multiple sources of distortions

a practical conference, especial during a keen discussion, many speakers may speak

at the same time, and thus the PSTN audio is likely to be a mixture of multiple

speakers. Therefore, a different speech representation which can somewhat separate

the speakers inside the speech mixture should be considered.



CHAPTER 6

SYNCHRONIZATION BASED ON

SPECTROGRAM

As concluded in the previous chapter, synchronization based on MFCC may suffer

from the performance corruption while PSTN audio is a mixture of conferees. The

reason to the performance corruption is that MFCC bins are easily distorted by other

speech sources, and additionally, it is hard to filter out the distorted matching column

by inferring from the unmixed and mixed MFCC. Therefore, in this chapter, we try

to discover a different representation of speech such that different sources of speaker

can somehow be separated which is related to the research field of speaker separation.

By surveying the research in speaker separation, we discover the advantage of simply

using spectrogram for synchronization. After the analysis of advantage of spectrogram

in separating different speakers, we propose a synchronization algorithm based on

spectrogram. Then similar evaluation of performance on waveform distortions to

previous chapters is included.

6.1 Spectrogram-Based Synchronization

Although speaker separation is not a new topic in the field of digital speech pro-

cessing, the discussion background is so different that this research can hardly be used

in this scenario. In [41–43], their algorithms require all the speeches are supervised

so as to construct masks, bases, or decomposition matrices for further computation.

Since the receiver has no way to know all the individual speeches, these solutions are

not applicable. Even though we can obtain all speeches somehow, the modeling pro-

cesses for masks, bases, and matrices are accurate only when enough audio received.

It implies that at the beginning of conference, the models are not good enough.

In [44] and [45], speech separation can be done without supervised audio. How-

ever, authors of [44] use EM algorithm to estimate multi-pitch model. This cannot

support real-time separation. Although in [45] the authors claim that their algorithm

can achieve real-time processing with high-performance DSP architectures, this DSP

architecture is not available for common mobile handsets. Furthermore, their algo-

rithm assumes there are only two speakers and the volumes are sufficiently different.

59
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Figure 40: Spectrogram of a period of speech

This may not be the case all the time.

As concluded in the previous chapter, the previous algorithm based on MFCC

is not a suitable solution to synchronization since MFCC considers only the factors

that mostly related to human perception, and thus omitting other information of

speech which might be useful in synchronization. Inspired by the human auditory

system, research on Computational Auditory Scene Analysis (CASA) [46] deals with

verification and segregation of audio segments to imitate how audio is processed in

human auditory system. In the field of CASA and even common speech process-

ing [47], audio signals are usually manipulated in the time-frequency (T-F) domain

which demonstrates the frequency distribution within short time interval. Frequency

distribution may differ in consequence of different speakers or different words. Even

within the same word, different syllables may reveal different frequency distribution.

This implies that from the frequency distribution, audio from different speakers or

different syllables pronounced by the same speaker is distinguishable in T-F domain.

Therefore, we develop an algorithm based on these T-F domain features for synchro-

nization.

An example of spectrogram of speech is illustrated in Figure 40. The speech is

divided into half-overlapping analysis windows. Each analysis window is transformed
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to one spectrum by Fourier transform. Different shapes in time-domain may results

in different distributions in the spectrogram. This implies that the spectrogram can

somewhat represent the time-domain characteristic in the frequency domain.

6.1.1 Sparsity on Spectrogram

To cope with the insufficiency of synchronization algorithm based on either cross

correlation or MFCC for speech mixture, an individual-speaker-identifiable feature

should be used. Joujine et al. [48] and Roweis [49] have noted that a speech signal is

sparsely distributed in a high-resolution T-F representation and ,as a result, different

speech utterances tend not to overlap in individual T-F units. This observation leads

to the property of orthogonality between different speech utterances, which is often

referred to as Window-Disjoint Orthogonality (W-DO). The orthogonality assumption

holds well for mixtures of speech and other sparsely distributed signals, but is not

valid for speech babble.

6.1.1.1 Concepts of Approximate W-DO

Perfect W-DO should satisfy that each frequency bin at a certain window is con-

tributed by single speaker. It can be represented by Equation 6.6.

X(τ, ω)× Y (τ, ω) = 0

where X(τ, ω) and Y (τ, ω) are the spectrogram of different speakers
(6.1)

Many blind speech separation research endeavors are based on the approximate W-DO

of speech, such as [50–55], while [56] has analyzed the effect of approximate W-DO.

This sparsity in spectrogram from different speaker provides a helpful tool to separate

speech mixture and also suggests a better feature than MFCC in synchronization

algorithm design. A more concrete concept of approximate W-DO of speech can be

presented by Figure 41.

The upper two spectrograms in Figure 41 shows the T-F distribution of original

speeches. As expected, the male speech locates most of its energy at low frequency

bins, while the female speech reveals a more spread distribution in spectrogram.

To illustrates the concept of approximate W-DO, the lower spectrogram shows the

square-rooted multiplication of the upper two spectrograms along with the spectrum

for a certain analysis window. In comparison with the original two spectrograms,

the square-rooted multiplication (geometric mean) exhibits a relative low magnitude

distribution at most frequencies. That means if one speech is large at a certain

frequency then the other speech is likely to be small. This implies that these two
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speeches tends not to have high magnitude at the same T-F bin which is exactly the

spirit of approximate W-DO. However, solely from the spectrogram multiplication, it

is hard to tell the degree of the accuracy of W-DO. In the next part, a quantity that

measures the accuracy of W-DO is presented, along with a discussion of the influence

of different parameter settings on W-DO.

6.1.1.2 Measurement of W-DO

Authors in [50] presents a suitable metric for W-DO measurement. Ideally, perfect

W-DO ensures that for each T-F bin in the mixture spectrogram, the energy is solely

contributed by a single speaker. However, approximate W-DO suggests that for

speech signal, it is likely that more than one speech source may contribute to the

same T-F bin while only one or few of them may provide significant large energy.

Hence, a more accurate W-DO can be interpreted in two fold: If each T-F bin is

assumed to belong to one significant speech,

1. the total preserved energy of the speech of interest should be approximately

equal to the total original energy of it.

2. the remaining energy of other speeches should be as low as possible.

For this reason, two factors are defined: (1) the preserved-signal ratio (PSR) and

(2) the signal-to-interference ratio (SIR). Before the definition of PSR and SIR, the

significance criterion is first defined as

Ψx
j ≡

{
1, if 20log(

ŝj(τ,ω)

ŷj(τ,ω)
≤ x);

0, otherwise,
where x is the masking threshold. (6.2)

Here, x is called masking threshold because Ψ masks out other speeches by a x dB

threshold, and j represents the index of source speech. When the source energy is

larger than the interference energy by x dB in a specific T-F bin, it is considered

significant in this T-F bin.

For a specific significance criterion Ψx
j , PSR is defined as

PSRΨx
j
≡
||Ψx

j (τ, ω)ŝj(τ, ω)||2

||ŝj(τ, ω)||2

where ||f(τ, ω)||2 ≡
∑

τ

∑
ω

|f(τ, ω)|2
(6.3)

which suggests that PSRΨx
j

= 1 if Ψx
j preserves all the original source energy.
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Figure 42: WDO measurement with different number of speakers

To define SIR, the interference yj is defined beforehand as

yj(t) ≡
∑
k,k 6=j

sk(t) (6.4)

which is the time-domain summation of speeches other than sj. Thus SIR with

significance criterion Ψx
j can be defined as

SIRΨx
j
≡
||Ψx

j (τ, ω)ŝj(τ, ω)||2

||Ψx
j (τ, ω)ŷj(τ, ω)||2

. (6.5)

Obviously, larger SIRΨx
j

indicates less remaining interference after Ψx
j .

Combining PSRΨx
j

and SIRΨx
j

into one measure of approximate W-DO, metric

WDOΨx
j

is defined as

WDOΨx
j
≡
||Ψx

j (τ, ω)ŝj(τ, ω)||2 − ||Ψx
j (τ, ω)ŷj(τ, ω)||2

||ŝj(τ, ω)||2

= PSRΨx
j
−

PSRΨx
j

SIRΨx
j

,

(6.6)

meaning the normalized difference of remaining source energy and interference energy

after Ψx
j . For perfect W-DO, WDOΨx

j
= 1 which implies that PSRΨx

j
= 1 and

SIRΨx
j
→ ∞ so different sources are completely disjoint. The better approximate

W-DO this speech can achieve, the more closer to 1 WDOΨx
j

is.

Since W-DO relies on the sparsity distribution of different speeches, when the

number of speakers in the speech mixture, it is much more likely that different speakers

may all largely contribute to the same T-F bin, and thus declining the accuracy of
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Figure 43: WDO measurement with different masking thresholds

approximate W-DO. Figure 42 shows the WDO measure with regards to different

number of speeches in the interference yj. As expected, WDO decreases as yj contains

more and more speakers as a result of declining PSR and SIR. This indicates that

it is more difficult to tell a specific speaker from others since they are too disorderly

to tract. Fortunately, in our scenario, the number of interfering speaker is unlikely

to have a large value. For a mixture containing less than five speakers, the W-

DO measure could be larger than 0.75. This means that deducting the effect of

interference, still three-forth of the original energy is retained.

However, the accuracy of approximate W-DO is not only affected by the number

of speakers in the mixture. Different parameter settings at the significance deter-

mination stage and even the STFT may also induce different W-DO measures. For

significant determination, the masking threshold directly influence on both PSR and

SIR. As shown in Figure 43, larger masking threshold suggests that less T-F bins

would be chosen to be significant, and thus the preserved energy of original source is

less. Therefore PSR is lower. On the other hand, for the chosen T-F bins, the source

signal is much greater than the interference so SIR is accordingly larger. This is a

trade-off to W-DO since going either side does not benefit both. The W-DO measure

in Figure 43 reveals that a moderate masking threshold is required to achieve higher

approximate W-DO.

On the other side, the windowing process may also affect the accuracy of approxi-

mate W-DO as discussed in [57]. Larger window size may increase the frequency res-

olution, however, it may also destroy the W-disjoint orthogonality among speeches.
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Figure 44: WDO measurement with different window sizes

On the contrary, small window size may not contain enough time information to

represent the quasi-periodicity of speech as shown in the previous chapter. There is

no optimal method of choosing the best-suited window size, nevertheless, Figure 44

shows that the best window size to achieve the highest WDO is 512 samples (64ms

for 8k sampling rate). This is consistent with the work in [50]. So, we assume that

an analysis window size of 64ms is the preferable one for high W-DO.

6.1.1.3 Significance in Mixture Spectrum

Since we have introduce the concept of W-DO in spectrogram, the next question

to consider is how to apply the concept of W-DO to our synchronization algorithm.

The objective is to infer from the unmixed IP audio and the mixed PSTN audio

that which frequencies contains mostly of the unmixed IP audio. Figure 45 shows

the spectrum of two speeches and their combination. When one speech is silence or

almost silence, the spectrum of combination is of course dominated by the voiced

one. However, if two speeches are both voiced, we can observe that the combination

is usually dominated by either one of the speeches as a result of approximate W-DO.

This implies that if we can infer from the unmixed IP audio and the mixed PSTN

audio that which one dominates a certain frequency. Then by comparing only those

frequencies that the unmixed IP audio dominates, the effect of speech mixture on the

synchronization should be lessen.

Concluded from the discussion in this subsection, T-F representation of speech can

lessen the indistinguishableness of speech mixture. Since in our scenario the unmixed

speech can be transmitted through the IP network, exploiting the uncorrupted T-F
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Table 3: List of parameters

Notation Meaning
â T-F representation of a after STFT

â(τ, ω) Specific bin of â at time τ and frequency ω
ra(τ,ω) Magnitude of â(τ, ω)
φa(τ,ω) Phase angle of â(τ, ω)

∆φτ,ω Phase difference of two sources at time τ and frequency ω
α ri

rs

η Bound of rm

rs

bins for synchronization determination might be able to increase the performance of

synchronization algorithm for mixed speech from the PSTN network.

6.2 Synchronization Algorithm Design

Based on the previous discussions of merits on spectrogram for synchronization,

we proposed an algorithm structure that utilizes the speech spectrogram to learn the

synchronization point in PSTN-audio stream.

6.2.1 Significance Determination

The most important unit in our synchronization algorithm is the significance lo-

cator which is designed to improve the robustness of our algorithm against the effect

of simultaneous speakers. Based on the fact that it is easier to distinguish a specific

source ŝ from the mixture m̂ when ŝ is larger than the interference î, if we can some-

how manage to determine the significance of ŝ in m̂, then the synchronization would

be simply matching the significant frequency bins with ŝ(τ, ω) received from the IP

network.
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To clarify the determination of significance merely from m̂(τ, ω) and ŝ(τ, ω), fur-

ther discussions are stated in the following paragraphs. Source ŝ(τ, ω) = |rs(τ,ω)|6 φs(τ,ω)

and interference î(τ, ω) = |ri(τ,ω)|6 φi(τ,ω) are shown in the left coordinate of Figure

46. To simplify the notation, rs(τ,ω) is simply referred to as rs if no further statement,

and so are ri(τ,ω) and rm(τ,ω). The list of used parameters are shown in Table 6.2.1.

Without loss of generality the coordinate can always be rotated so as to make the

source lie on the horizontal axis. Thus the angel between ŝ(τ, ω) and î(τ, ω) is ∆φτ,ω

which is simply noted as ∆φ. Therefore, rm is derived as

r2
m = (rs + ricos(∆φ))2 + (risin∆φ)2

= r2
s + 2rsricos∆φ + r2

i (cos
2
∆φ + sin2

∆φ)

= r2
s + 2rsricos∆φ + r2

i .

(6.7)

It is shown in Equation 6.7 that the magnitude of mixture is dependent not only

on the magnitudes of source and interference but also on the relative phase angle

between them.

Assuming that ri = αrs where 0 ≤ α, Equation 6.7 becomes

r2
m = r2

s + 2αr2
scos∆φ + α2r2

s

= r2
s(1 + 2αcos∆φ + α2)

(6.8)

If rs dominates rm,

⇔ α should be small

⇒ rm → rs

⇔ rm

rs

→ 1.

(6.9)

From Equation 6.9, we can see that if rs dominates rm, rm

rs
→ 1. The reverse is not

necessarily be true since rm

rs
→ 1 is only a sufficient condition of rs dominating rm.

However, the sparsity (approximate W-DO) on spectrogram of speech signals suggests

that usually rs and ri are largely different from each other. In other words, when rs

is closer to rm ( rm

rs
→ 1), it is most likely that α is very small ⇔ rs dominates.

Using the above relation, we design the similarity metric as the normalized abso-

lute error between rs and rm (| rm−rs

rs
|). In general, the value of similarity metric can

be derived as
rs − ri ≤ rm ≤ rs + ri ⇒ −αrs ≤ rm − rs ≤ αrs

⇒ −α ≤ rm − rs

rs

≤ α

⇒ |rm − rs

rs

| ≤ α.

(6.10)
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It can be seen that the similarity metric is bounded by α. If only those frequency

bins where rs dominates are chosen, the similarity metric may obtain relatively low

values since those bins have small α values.

In order to determine whether rs is significant in a certain frequency bin, rm

rs
is

first examined. If rm

rs
is less than a certain bound η above 1, this bin is chosen for

similarity comparison since the possible α values ranges only from 0 to 1, and thus

are potentially significant. For those frequency bins at the correct synchronization

column, since bins with relatively small rs values to rm values are filtered out, the

remaining bins are usually dominated by rs. Therefore the similarity metric may

usually obtain small values bounded by α. However, for those frequency bins at other

columns, the comparing rm values are not composed of rs values, so the similarity

metric will not be bounded and thus may obtain quite large values. Hence the correct

synchronization column can be located by choosing the one with smallest average

similarity metric value.

Note that possible α values are affected by the bound η. While larger η may also

choose less significant bins for comparison, smaller η values may reduce the number of

chosen frequency bins. However, more number of chosen frequency bins may lessen the

effect of occasional α values near 1. This implies that the more significant frequency

bins are chosen, the more accurate this algorithm can achieve.

6.2.2 Synchronization Module

Based on the afore-mentioned significance determination, we design a synchroniza-

tion module which utilize the spectrogram for synchronization, as shown in Figure

47.

When the synchronization is triggered, a segment of speech from the IP audio

buffer is chosen and sent to the FFT processor. The size of the speech segment

depends on the specified matching window size. Similar to the notation in MFCC,

the number of analysis windows inside a matching window is simply referred as the

matching columns since the spectrogram is like a set of column vectors while each

column contains the frequency distribution of certain analysis window. Meanwhile,

within the search range, the PSTN audio is sent to the FFT processor for later use

in synchronization.

Inside the synchronization module, both the spectrograms from IP audio and

PSTN audio of the size of matching window are first sent to the silence filter which

determines whether this matching column is silence. This silence filter is required

since if the IP spectrogram is silence, then using this column for synchronization
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determination is easily affected by noises. On the other hand, because only none

silence parts of IP audio are chosen for comparison, removing the silence parts in

PSTN audio can reduce the computation for comparing these silence parts.

After the silence filter stage, the significance locator infer from these two spectro-

grams to determine which frequencies are possibly dominated by the IP audio. The

significance locator is designed as previously stated. Then this potential dominating

frequency information is sent to the similarity metric, together with the IP and PSTN

matching columns. The similarity metric stage computes the mean absolute difference

of these two matching columns at only the frequencies depicted by the significance

locator.

The same process is iteratively performed for each matching windows within the

search range. Each iteration records the acquired similarity metric for its matching

window. After the iterations, the matched window is determined by the matching

window with the minimum similarity metric.

6.3 Performance Evaluation

In this section, the synchronization algorithm is implemented using Matlab to

evaluate the effectiveness and robustness of it. Again, the evaluation on performance

focuses on the discussion of different kinds of distortions on spectrogram. Note that in

the following evaluation, the analysis window used in FFT is 64ms with 32ms overlap.

Therefore, the acquired spectrum columns are 32ms away from their neighboring

columns

6.3.1 Codec Distortion

Since the spectrogram faithful represents the frequency distribution of the speech

signal, when the speech signal is modified, the spectrogram is consequently modi-

fied, too. Therefore, the resulting spectrograms for different voice codecs might be

different. Figure 48 shows the difference between the spectrums after different voice

codecs for a certain analysis window. It is observed that at some frequencies the

AMR and G.729 codec may result in different values. Since the differences may not

be large enough to be eliminated by the significance locator, they are all included in

the similarity metric and thus might induce error judgments.

Fortunately, the error induced by the voice codec can be lessen by sufficiently

large matching columns, for example 6 columns which is 192ms in length, as shown in

Figure 49. Therefore, the spectrogram-based synchronization algorithm can overcome
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the distortion introduced by voice codecs.

6.3.2 Misalignment of Analysis Windows

In order to measure the effect of analysis window misalignment, we define a simple

normalized square error metric, called SE, which is defined as

SE =
||ŝ(τ, ω)− ŝ(τ −∆, ω)||2

||ŝ(τ, ω)||2

where ∆ is the time shift.

(6.11)

SE actually represents the normalized error energy among neighboring columns. The

more the neighboring columns differ from the column of interest, the larger SE value

is obtained. Figure 50 shows the SE between the spectrogram with time shifted

analysis windows and the unshifted columns. As the time shifts away from 0, the

SE comparing to the 0-shifted column starts to grow while the SE comparing to the

1-shifted column starts to decrease. These two SE lines cross at the time shift of

around 16 ms. Since each column is 32ms away from its neighbor, we can observe

that the SE value comparing to the 1-shifted column has its minimum at the time

shift of around 32ms.

This observation implies that when the time shift is near 0 or the integer multiple of

32ms, the determined matched column is highly probable to be chosen as the nearest

column. However, when the time shift is around 16ms, the spectrogram becomes so
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Figure 51: Performance of spectrogram for misaligned windows

obscure that error judgments may occur. The performance shown in Figure 51 is

consistent with the inference from Figure 50. Although few matching columns might

not obtain satisfying percentage of accuracy, when the number of matching columns

increase to over 6 columns (which is 192ms in time), the achievable accuracy is more

than 90%.

6.3.3 Noise Distortion

Again, the AWGN noise is applied on the speech to observe the influence of noise

on spectrogram. Since the AWGN noise is ideally equally distributed throughout

the spectrum, the effect on each frequency component may be small. As long as the

energy of the clean speech is large, the influence of noise is negligible, as shown in

Figure 52. Since the original speech energy level is high in this analysis window, the

influence of noise is relatively small. However, this is not always the case since a

common speech signal inherently contains both high energy parts and lower energy

parts. Therefore, the performance might still be affected.

Figure 53 shows the performance against different noise levels. When the noise

energy level increases, the percentage of accuracy fluctuates with slight tendency

to decrease. Comparing to the performance acquired from MFCC algorithm, the

spectrogram is less sensitive to the additional noise. The reason is because the noise

energy is distributed on the entire spectrum, therefore the effect on each frequency
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Figure 54: Performance of spectrogram against overlapping speaker

component is less. On the other hand, the process of computing MFCC bins may

collect the distributed energy and then cast it to the low MFCC bins, hence the

performance is easier to be corrupted.

6.3.4 Overlapping Speakers

Since the motivation of this spectrogram-based synchronization algorithm is to

compensate the insufficiency of MFCC-based synchronization against overlapping

speaker, this algorithm should outperforms the MFCC-based algorithm. The effect of

additional speakers on the spectrogram is discussed in the early parts of this chapter,

so we directly put the performance here, as shown in Figure 54.

From Figure 54 we can observe that the percentage of accuracy still drops as the

number of interfering speakers increases. This is because more speakers in the mixture

may corrupt the sparsity between different speeches, thus affecting the performance.

Therefore, too many speakers may exceed the capability of this spectrogram-based

algorithm. However, comparing to the performance of MFCC-based algorithm, this

spectrogram-based algorithm can usually achieves better accuracy when there are

overlapping speakers in the PSTN audio. Additionally, if we only consider less than

two interfering speakers, this spectrogram-based algorithm can achieve more than

90% accuracy if 8 or more matching columns are applied.
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Figure 55: Performance of spectrogram against packet loss

6.3.5 Packet Loss

Since the packet loss may result in different speech waveforms, it also introduces

variation to frequency components in the spectrum. Therefore, the resulting spec-

trum might be different from the original one. Additionally, the adopted packet loss

concealment method simply duplicates the previous received packet, regardless of the

phase of the waveform. It may result in a discontinuous joint at duplicated packet

and thus introduce high frequency components to the spectrogram.

The performance of spectrogram on the packet lost IP audio is shown in Figure 55.

The achievable accuracy for a certain loss rate and matching columns is lower than

that of MFCC-based algorithm. Besides, even a large number of matching columns is

applied, for example 16 columns which is 512ms in time, the performance still can’t

ensure 100% accuracy for high loss rates. However, a loss rate as high as 50 or 60% is

impractical since the concealed audio may be unacceptable for human perception. If

we only consider a loss rate less than 20%, 6 matching columns can still ensure 100%

accuracy.

In consideration of practical situation, Figure 62 shows the performance of cross

correlation when multiple sources of distortions occurs. Since the spectrogram-based

algorithm is more vulnerable to packet losses, the performance of distortions including

packet loss is worse than the non-packet-lost one. However, the performance is always

improved as the number of matching columns increased.
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Figure 56: Performance against multiple sources of distortions

6.3.6 Short Conclusion on Performance

In conclusion, directly using spectrogram for comparing the similarity among the

matching windows might be affected by waveform distortions since the spectrogram is

transformed directly from the waveform. Therefore, since the packet loss concealment

algorithm may include additional high frequency distortions to the spectrogram due

to the discontinuity of waveform, the spectrogram is affected by packet loss. However,

for an AWGN noise, since the noise energy is spread through the entire spectrum,

the influence on each frequency component is less, comparing to that of the MFCC

bins. On the other hand, for overlapping speakers, this algorithm can usually achieve

acceptable performance as long as the sparsity holds which implies that the num-

ber of overlapping speakers should be small. Figure 62 reveals the robustness of

this spectrogram-based synchronization algorithm, as long as a large enough match-

ing window is applied. Even when multiple sources of distortions are added to the

speeches, this algorithm can achieve excellent accuracy.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we investigate on the audio/video synchronization challenges for a

heterogeneous teleconferencing scenario. Due to the heterogeneity in teleconferencing

devices, video conference might only be able to be hold among some of the conferees

in the audio conference. Therefore the audio stream and video stream may traverse

through different kinds of networks to the receiver. Since the timing relationship may

be corrupted by the conference server, synchronization algorithms should be applied

to somehow recover this timing information.

7.1 Performance Comparison

We have proposed an audio synchronization framework in chapter 3 to address

this synchronization problem in the heterogeneous teleconferencing scenario. Based

on the framework, we have proposed three different types of synchronization algorithm

and evaluated on the performance of each synchronization algorithm against possible

sources of waveform distortion.

7.1.1 Codec Distortion

Figure 57 shows the performance of the afore-mentioned three synchronization

algorithms against the codec distortion. It can be observed that the cross-correlation-

based synchronization algorithm is highly robust to the voice codec since the general

waveform trend is not severely distorted by the voice codec. On the other hand, for

the spectrogram-based algorithm, it requires a 256ms matching window to achieve

100% accuracy due to the direct distortion on spectrogram by codecs. As for the

MFCC-based algorithm, since the MFCC has extracted the important vocal tract

responses as features, it should not be severely affected by the codec.

7.1.2 Noise Distortion

When it comes to noisy speeches which is usually the case in practical environment,

as shown in Figure 58, the MFCC-based algorithm seems to be vulnerable to noises.

In order to ensure high accuracy, the matching window should be larger than 256ms.

80
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Figure 57: Performance comparison for codec distortion
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Figure 59: Performance comparison for overlapping speakers

However, the spectrogram-based algorithm, in comparison to the codec distortion,

doesn’t seem to be affected by this additional noise. This is because the introduced

AWGN noise is spread all over the spectrum, therefore the effect on each frequency

component is small.

As to the cross correlation algorithm, although the performance is able to achieve

more than 85% accuracy even for a 32ms window, enlarging the matching window

doesn’t do much good on the performance. This is because this algorithm utilize

only the time information. When the matching window is enlarged, more noises are

included, too.

7.1.3 Overlapping Speakers

Since the spectrogram-based algorithm is designed so as to overcome the effect of

overlapping speakers, it can outperform other algorithms for most cases, as shown in

Figure 59. Note that the notation “2” speakers includes the speaker of interest, as

well as “4” speakers. The performance of spectrogram-based algorithm can achieve

larger than 90% accuracy even for 4 speakers if a 256ms window is applied.

On the other hand, while the cross-correlation-based algorithm steadily improves

its performance to an acceptable level by applying a larger window, the MFCC-based

algorithm is so corrupted that the accuracy is usually less than 75%. Especially when

more interfering speakers are included in the PSTN audio, the performance is terrible.
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Figure 60: Performance comparison for packet loss

7.1.4 Packet Loss

If the IP audio suffers from packet loss, the spectrogram-based algorithm is severely

affected since the loss-concealed audio has modify the waveform and consequently the

spectrogram, as shown in Figure 60. However, for the other two algorithms, since

the packet-loss concealment algorithm doesn’t change much on the waveform trend

or the speech feature, they seem to be tolerant to this kind of distortion.

Nevertheless, if at the same time the PSTN audio includes other overlapping

speakers, the performance of different algorithms is shown in Figure 61. It can be

observed that the cross-correlation-based algorithm now seems to be seriously affected

by these two sources of waveform distortion. This has shown the vulnerability of using

only time domain information which is easily distorted for synchronization.

Now, if we combine all the above sources of distortions, the performance of each al-

gorithm is shown in Figure 62. We can observe that the spectrogram-based algorithm

outperforms the other two. Synchronization algorithm based on cross correlation is

limited in its performance by multiple sources of distortions as previously stated. As

for the MFCC-based algorithm, since it is vulnerable to overlapping speakers, the

performance is the worst among these three. However, we know that whenever there

is no overlapping speakers, performance of MFCC is better than that of spectrogram.

Generally speaking, although sources of distortion may affect on the performance for

all kinds of synchronization algorithms, larger matching window usually seems to be a

favorable solution to increase the accuracy of synchronization. However, larger match-

ing window suggests more samples to be compared in each iteration. The increased
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Figure 61: Performance on both overlap and packet loss
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Table 4: Required computation time of different algorithms

Matching Window Size (ms) 32 64 128 256 512

Cross Correlation 4.4s 5.9s 9.5s 15.6s 31.0s
MFCC 14.7ms 16.2ms 17.8ms 34.3ms 40.9ms

Relative to XCOR 0.334% 0.275% 0.187% 0.220% 0.132%
Spectrogram 19ms 22.8ms 36.7ms 68.4ms 116.5ms

Relative to XCOR 0.432% 0.386% 0.386% 0.438% 0.376%

Table 5: Required computation time of stages in MFCC and spectrogram

Matching Window Size (ms) 32 64 128 256 512

MFCC Conversion 14.6ms 16.0ms 17.6ms 27.8ms 34.1ms
MFCC Comparison 0.1ms 0.1ms 0.2ms 6.5ms 6.8ms

Percentage of Conversion 99.3% 98.8% 98.9% 81.0% 83.4%
Spectrogram Conversion 13.9ms 13.4ms 16.6ms 27.6ms 36.2ms

Spectrogram Comparison 5.2ms 9.4ms 20.1ms 40.7ms 80.4ms
Percentage of Conversion 73.2% 58.8% 55.2% 40.4% 31.1%

computation time for the synchronization module might affect the reactiveness to

network dynamics.

Table 4 has listed the required computation time of different synchronization algo-

rithms when matching window of different sizes is applied. The required computation

times for MFCC and spectrogram based algorithms are different from that of cross

correlation by the order of two because cross correlation spends too much time on full

search. Table 5 has revealed that for MFCC-based algorithm, the computation spends

most of the time on MFCC conversion. On the other hand, for the spectrogram-based

algorithm, the percentage of computation for comparison increases with the matching

window size.

The above discussion suggests the trade-off between accuracy and computation

time. Figure 63 shows the relationship of computation time and the achieved accuracy

in the situation of Figure 61. It can be observed that higher accuracy could be

traded from longer computation time. However, for the MFCC and Spectrogram

based algorithms, the required computation time is only a few milliseconds, while

the computation time for cross-correlation-based algorithm is larger by three orders.

Although cross-correlation seems to be robust for most cases, the long computation

time may destroy the reactiveness to network dynamics.
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Figure 63: Achievable accuracy for certain computation time
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7.2 Conclusions

The evaluation results shows that the time-domain cross correlation reveals an

appealing performance for its robustness against single low level distortions. However,

when the distortion level increases or multiple sources of distortions are included, the

performance is degraded and limited even when larger matching windows are applied.

On the other hand, the other two types of synchronization algorithms which are based

on the features extracted by the DSP techniques have their own robustness to certain

kinds of distortions.

However, these DSP features still have their limitations. The MFCC-based al-

gorithm reveals its robustness against different voice codecs and packet loss, while

the spectrogram-based algorithm shows more robustness to noise and overlapping

speakers. This complementary relation of MFCC-based and spectrogram-based al-

gorithm might suggest a future direction of optimizing the performance by utilizing

both features.

Additionally, since the target scenario may involve multiple users in the video

conference, this synchronization algorithm should be applied to all these video con-

ference users one by one. For the latter users to be synchronized, the interferences of

the former users to the PSTN audio can be subtracted in advance to achieve higher

performance.

In conclusion, to address the proposed synchronization problem, using DSP tech-

niques may be an appealing solution in terms of synchronization efficiency and robust-

ness. As long as the timing information can be accurately acquired by the synchro-

nization module, the PSTN audio can be synchronized with the IP video, according

to this information. Since our work mainly focuses on the synchronization frame-

work and the preliminary analysis of synchronization algorithms based on features

extracted by DSP techniques, practical implementation and algorithm optimization

could be possible future directions.
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